Photo: Thomas Brun / NTB

Ultimovacs enters the Oslo Stock Exchange

Ultimovacs enter Oslo Stock Exchange

Oslo Cancer Cluster member Ultimovacs, a Norwegian cancer vaccine company, has raised NOK 370 million and entered the Oslo Stock Exchange on Monday 3 June 2019.

There was a stir of interest among both national and international investors when Ultimovacs announced they will enter the Oslo Stock Exchange. Several interested parties have now become shareholders in the company, totalling approximately 1 500 shareholders.

“It is good for the Norwegian health industry and for Ultimovacs when national and international investors show the company this kind of trust. In today’s uncertain market, it is especially nice with such a large interest, from both international investors and small savers. I look forward to following the company further,” says Jonas Einarsson, Chairman of the Board in Ultimovacs and Managing Director in Radforsk.

The funds that Ultimovacs has raised will go to financing the development of their universal cancer vaccine, UV1. A large clinical study will document the effect of the vaccine. UV1 will be combined with other immunotherapies in patients with malignant melanoma (a type of skin cancer) at around 30 hospitals in Norway, Europe, USA and Australia.

Ultimovacs has already run two successful clinical trials of the vaccine on patients with lung cancer, prostate cancer and malignant melanoma.

“The cancer vaccine has shown promise in the studies we have conducted at the Norwegian Radium Hospital. Based on the results, we have established a development programme to document that our vaccine has effect on cancer patients. I am very happy that we now have entered the Oslo Stock Exchange. It means that the practical conditions are in place to put our development programme into action,” said Øyvind Kongstun Arnesen, Chief Executive Officer in Ultimovacs.

Sign up to OCC newsletter

Emmy and Benedicte learned about research into neuroscience and how to use modern medical technology, such as CRISPR, when on work placement with researcher Marianne Fyhn and her colleagues at the University of Oslo. Photo: Monica Jenstad

Learning about the human brain

Emmy and Benedicte learned about research into neuroscience and how to use modern medical technology, such as CRISPR, when on work placement with researcher Marianne Fyhn and her colleagues at the University of Oslo. Photo: Monica Jenstad

Oslo Cancer Cluster and Ullern Upper Secondary School arranged a work placement for students to learn about neuroscience at the University of Oslo.

Four biology students from Ullern Upper Secondary School spent two great days on work placement with some of the world’s best neuroscientists at the University of Oslo. In Marianne Fyhn’s research group, the students tried training rats and learned how research on rats can provide valuable knowledge about the human brain.

The Ullern students, Benedicte Berggrav, Lina Babusiaux, Maren Gjerstad Høgden and Emmy Hansteen, first had to dress in green laboratory clothes, hairnets and gloves. They also had to leave their phones and notepads behind, before enterring the animal laboratory where Marianne Fyhn and her colleagues work. Finally, they had to walk through an air lock that blew the last remnants of dust and pollution off them.

On the other side was the most sacred place for researchers: the newly refurbished animal laboratory. It is in the basement of Kristine Bonnevies Hus on the University of Oslo campus. We used to call it “Bio-bygget” (“the bio-building”) when I studied here during the ‘1990s.

 

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

It is the second day of the students’ work placement with Marianne. The four biology students, who normally attend the second year of Ullern Upper Secondary School, have started to get used to their new, temporary jobs. They are standing in one of the laboratories and looking at master student Dejana Mitrovic as she is operating thin electrodes onto the brain of a sedated rat. PhD student Malin Benum Røe is standing behind Dejana, watching intently, giving guidance and a helping hand if needed.

“We do this so we can study the brain cells. We will also find out if we can guide the brain cells with weak electrical impulses. This is basic scientific research. In the long term, the knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm,” Marianne explained.

“The knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm.”

Dejana needs to be extremely precise when she connects the electrodes onto the rat’s brain. This is precision work and every micrometre makes a difference.

 

Training rats

The previous day, Maren, Benedicte, Lina and Emmy helped to train the rat on the operating table on a running course. Today, the Ullern students will train the other rats that haven’t had electrodes surgically connected to their brains yet.

“We will train the rats to walk in figures of eight, first in one direction and then the other”, the students explained to me.

We remain standing in the rat training room for a while, talk with Dejana and train some of the rats. Dejana tells me that the rats don’t have any names. After all, they are not pets, but they are cared for and looked after in all ways imaginable.

“It is very important that they are happy and don’t get stressed. Otherwise, they won’t perform the tasks we train them to do,” says Dejana. She and the other researchers know the animals well and know to look for any signs that may indicate that the rats aren’t feeling well.

“It is very important that they are happy and don’t get stressed.”

I ask the students how they feel about using rats for science.

“I think it is completely all right. The rats are doing well and can give us important information about the human brain. It is not okay when rats are used to test make-up and cosmetics, but it is a whole different matter when it concerns important medical research,” says Emmy and the other biology students from Ullern nod in agreement.

 

Understanding the brain

Marianne is the head of the CINPLA centre at the University of Oslo, where Maren, Benedicte, Lina and Emmy are on work placement for two days. Four other Ullern students, Henrik Andreas Elde, Nils William Ormestad Lie, Hans Christian Thagaard and Thale Gartland, are at the same time on a work placement with Mariannes research colleague, Professor of Physics Anders Malthe-Sørenssen. They are learning about methods in physics, mathematics and programming that help researchers to better understand the brain.

“CINPLA is an acronym for Centre for Integrative Neuroplasticity. We try to bring together experimental biology with calculative physics and mathematics to better understand information processing in the brain and the brain’s ability to change itself,” says Marianne.

Physics, mathematics and programming are therefore important parts of the researcher’s work when analysing what is happening in the rat’s brain.

If you think that research on rats’ brain cells sounds familiar, then you are probably right. Edvard and May-Britt Moser in Trondheim received the first Norwegian Nobel Prize in Medicine in 2014. The award was given to them for their discovery of a certain type of brain cells, so called grid cells. The grid cells alert the body to its location and how to find its way from point A to point B.

Marianne did her PhD with Edvard and May-Britt, playing an essential role in the work that led to the discovery of the grid cells. Marianne was therefore very involved in Norway securing its first Nobel Prize in Medicine.

 

The dark room

Another room in the animal section is completely dark. In the middle of the room, there is an enormous box with various equipment. In the centre of the box, there is a little mouse with an implant on its head.

In this test room, there is an advanced microscope. It uses a laser beam to read the brain activity of the mouse as it alternates between running and standing still on a treadmill.

The researcher Kristian Lensjø is back from a longer study break at the renowned Harvard University and will use some of the methods he has learned.

“I will train the mouse so that it understands that for example vertical lines on a screen mean reward and that horizontal lines give no reward. Then I will look at which brain cells are responsible for this type of learning,” says Kristian.

The students stand behind Kristian and watch the mouse and the computer screen. When the testing begins, they must close the microscope off with a curtain so that the mouse is alone in the dark box. Kristian assures us that the mouse is okay and that he can see what the mouse is doing through an infra-red camera.

“This room and the equipment is so new, we are still experiencing some issues with the tech,” says Marianne. But Christian fixes the problem and suddenly we see something on the computer screen that we have never seen before. It is a look into the mouse’s brain while it runs on the treadmill. This means that the researchers can watch the nerve cells as the mouse looks at vertical and horizontal lines, and detect where the brain activity occurs.

 

Research role models

The students from Ullern know they are lucky to see how cutting-edge neuroscience is done in real life. Marianne and her colleagues are far from nobodies in the research world. Bente Prestegård from Oslo Cancer Cluster and Monica Jenstad, the biology teacher at Ullern who coordinates the work placements, made sure to tell the students beforehand.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level. They can see that the people behind the research are nice and just like any normal people. When seeing good role models, it is easier to picture a future in research for oneself,” says Monica.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level.”

Monica and Marianne have known each other since they were master students together at the University of Tromsø almost twenty years ago.

“I know Marianne very well, both privately and professionally. She is passionate about her research and about dissemination and recruitment. She also works hard to create a positive environment for her research group. Therefore, it was natural to ask Marianne to receive the students and it wasn’t difficult to get her to agree,” says Monica.

Back in the first operating room, Dejana and Malin are still operating on the rats. They will spend the entire day doing this. It takes time when the equipment needs to be found and sterilised, the rats need to be sedated and then operated on as precisely as possibly. It is past noon and time for lunch for Marianne, Kristian and the Ullern students on work placement.

Before I leave them outside Niels Henrik Abels Hus at the Oslo University Campus, I take a picture to remember the extra-ordinary work placement. And not least: to store a picture of the memory in my own brain.

 

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

 

Sign up to OCC newsletter

Photo: Nordic Nanovector

A successful first quarter for Nordic Nanovector

Lab researcher from Nordic Nanovector

Nordic Nanovector raises NOK 225 million in private placements, begins phase II clinical trials in 74 sites in 23 countries and prepares to commercialize the company. These were some of the good news presented in the first quarter 2019 report.

Oslo Cancer Cluster’s member company Nordic Nanovector develops precision medicine against haematological cancers. These are the types of cancers affecting blood, bone marrow and lymph nodes – also known as leukaemia, lymphoma and myeloma. These cancers are notoriously difficult to treat and therefore have a highly unmet medical need.

On the morning of 23 May 2019, the CEO of Nordic Nanovector, Eduardo Bravo, presented some of the successes the company has had during the first quarter of 2019.

“As we advance the clinical development programmes with Betalutin, including PARADIGME, we are also beginning to initiate some of the other pre-commercialisation activities, such as manufacturing, that are crucial to ensure that we can submit our regulatory filing in a timely and efficient manner.”

The company’s highlights from the first quarter included raising approximately NOK 225 million in private placements.

They have also extended their clinical trials, known as the PARADIGME study, which address advanced, recurring follicular lymphoma. They now have phase II clinical trials in over 74 sites in 23 countries.

During the first quarter, Nordic Nanovector has also welcomed a new chairman to the Board of Directors – Jan H. Egberts, M.D. He is also the chairperson of the Board of Directors of Oslo Cancer Cluster member Photocure.

Lastly, Dr Mark Wright has been appointed Head of Manufacturing to lead the production of Nordic Nanovector’s therapies. This prepares Nordic Nanovector for future commercialisation and will hopefully lead to more precise treatments successfully reaching cancer patients.

 

Cathrine Wahlström Tellefsen gave a talk to teachers on how programming can be used to teach science subjects in upper secondary schools.

Introducing programming to the curriculum

KUR programming event for teachers to learn to teach programming.

Programming is not only for computer hackers, it can also help teachers to engage their students in science subjects and inspire start ups to discover new cancer treatments.

 

Almost 60 teachers working in upper secondary schools in Oslo visited Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School one evening in the end of March. The topic for the event was programming and how to introduce programming to the science subjects in school.

“The government has decided that programming should be implemented in schools, but in that case the teachers first have to know how to program, how to teach programming and, not least, how to make use of programming in a relevant way in their own subjects.”

This was how Cathrine Wahlström Tellefsen opened her lecture. She is the Head of Profag at the University of Oslo, a competence centre for teaching science and technology subjects. For nearly one hour, she talked to the almost 60 teachers who teach Biology, Mathematics, Chemistry, Technology, Science Research Theory and Physics about how to use programming in their teaching.

 

What is KUR? KUR is a collaborative project between Oslo Cancer Cluster, Ullern Upper Secondary School and other schools in Oslo and Akershus. It aims to develop the skills and competence of science teachers. Every six months, KUR arranges a meeting where current topics are discussed.

 

Programming and coding

“Don’t forget that programming is much more than just coding. Computers are changing the rules of the game and we have gained a much larger mathematical toolbox, which gives us the opportunity to analyse large data sets,” Tellefsen explained.

Only a couple of years ago, she wasn’t very interested in programming herself, but after pressures from higher up in her organisation, she gave it a shot. She has since then experienced how programming can be used in her own subject.

“I have been a Physics teacher for many years in an upper secondary school in Akershus, so I know how it is,” she said to calm the audience a little. Her excitement over the opportunities programming provides seemed to rub off on some of the people in the room.

“In biology, for example, programming can be used to teach animal population growth. The students understand more of the logic behind the use of mathematical formulas and how an increase in the carrying capacity of a biological species can change the size of its population dramatically. My experience is that the students start playing around with the numbers really quickly and get a better understanding of the relationships,” said Tellefsen.

When it was time for a little break, many teachers were eager to try out the calculations and programming themselves.

 

Artificial intelligence in cancer treatments

Before the teachers tried programming, Marius Eidsaa from the start up OncoImmunity (a member of Oslo Cancer Cluster) gave a talk. He is a former physicist and uses algorithms, programming and artificial intelligence every day in his work.

“OncoImmunity has developed a method that can find new antigens that other companies can use to develop cancer vaccines,” said Eidsaa.

He quickly explained the principals of immunotherapy, a cancer treatment that activates the patient’s own immune system to recognise and kill cancer cells, which had previously remained hidden from the immune system. The neoantigens play a central role in this process.

“Our product is a computer software program called Immuneprofiler. We use patient data and artificial intelligence in order to get a ranking of the antigens that may be relevant for development of personalised cancer vaccines to the individual patient,” said Eidsaa.

Today, OncoImmunity has almost 20 employees of 10 different nationalities and have become CE-marked as the first company in the world in their field. (You can read more about OncoImmunity in this article that we published on 18 December 2018.)

The introductory talk by Eidsaa about using programming in his start up peaked the audience’s interest and the dedicated teachers eagerly asked many questions.

 

Programming in practice

After a short coffee break, the teachers were ready to try programming themselves. I tried programming in Biology, a session that was led by Monica, a teacher at Ullern Upper Secondary School. She is continuing her education in programming now and it turns out she has become very driven.

“Now you will program protein synthesis,” said Monica. We started brainstorming together about what we needed to find out, which parameters we could use in the formula to get the software Python to find proteins for us.

Since my knowledge in biology is a little rusty, it was a slow process. But when Monica showed us the correct solution, it was surprisingly logical and simple. The key is to stay focused and remember to have a cheat sheet right next to you in case you forget something.

 

Sign up to OCC newsletter

Biobank Norway coordinates Norwegian biobanks with the health industry to ensure that the valuable biosamples are used to develop new, breakthrough treatments.

How will biobanks accelerate cancer research?

Image of taking tests in the lab.

Biobanks ­– the powerful tools in cancer research you may have never heard of.

 

Biobank Norway is a national research infrastructure that comprises all public biobanks in Norway and represents one of the world’s largest existing resources within biobanking. They are also a member of Oslo Cancer Cluster, through NTNU, and represent an exciting initiative in the endeavour to develop precision medicine.

 

A biobank is a storage facility that keeps biological samples to be used for medical research. The samples come from population-based or clinical studies.

 

Christian Jonasson, seniorforsker ved NTNU.

Christian Jonasson, seniorforsker ved NTNU.

Christian Jonasson, the Industry Coordinator for Biobank Norway, connects businesses with Norwegian biobanks to accelerate medical research. He said that more biobanks now work with the health industry and benefit from added value in the process.

“It is the health industry that will ultimately bring new therapies to patients.”
Christian Jonasson

Biobank Norway has developed several strategic areas for Norwegian biobanks. They have built automated freezers for secure long-term storage, with advanced robotised systems that can retrieve barcoded biological samples. They have initiated new biobanks, established new IT systems and also developed policies for public-private collaborations. Also, they have contributed to strategic processes that promote increased utilization of Norwegian health data, including the national Health Data Program.

Ultimately, Biobank Norway aims to facilitate collaborations between the global health industry and Norwegian biobanks to accelerate innovation in the life sciences, disease prevention and treatment.

“Biobanks are one of the most important tools in precision medicine.” Christian Jonasson

 

Biosamples may be used for important, life-saving cancer research. For example, to develop new immunotherapies, such as T cell therapy. Photograph by Christopher Olssøn

Biosamples may be used for important, life-saving cancer research. For example, to develop new immunotherapies, such as T cell therapy. Photograph by Christopher Olssøn

 

A competitive edge

Norway has been collecting biological samples for the last 30-40 years. For example, one of the world’s largest birth cohort studies, the Mother and Child study (called MoBa) was initiated in 1999. It included 100 000 newborns with mother and father, which totalled over 285 000 participants over a ten-year period. There are numerous other Norwegian health studies, which have involved hundreds of thousands of people, such as the HUNT study and the Tromsø study.

Moreover, the Norwegian Radium Hospital have collected countless valuable samples from cancer patients over the years from both regular clinical care and from clinical research studies. Hospitals across Norway also continually collect and save diagnostic samples, which may be used for medical research at a later stage.

The number of biobanks and the rigorous collection of clinical data in health registers in Norway represent unique assets for medical researchers.

“Norway has a competitive edge on its health data infrastructure.” Christian Jonasson

 

Sharing the data

However, Jonasson also points out that the health registers in Norway are too fragmented. To combat the problem, Biobank Norway are helping the Norwegian Directorate of eHealth to develop a Health Data Program. The digital platform, called the Health Analytics Platform (HAP), will collate copies of relevant data from the various health registers, providing a single point of easy access for researchers.

Biobank Norway also has a long-term vision to collect all biobank data and health data in a common platform. This is a necessary step to unleash a larger national precision medicine initiative. First, they want to organise the data from the four largest population-based cohort studies in one place. In a couple of years, this database would hopefully include 400 000 people, which is a very attractive cohort for medical research.

“We need to attract leading actors from the international health industry and Norwegian start-ups in real collaborations with biobanks.” Christian Jonasson

Important medical research is already being conducted in biobanks across Norway. Jonasson said that there now needs to be a plan to market Norwegian health data and biobanks internationally to spur innovation further.

 

Image of DNA spiral.

Biosamples are also used for sequencing of the human genome, to develop more precise diagnosis and treatment of cancer.

 

The hidden key

To unlock the potential of biobanks, the biological samples need to be analysed and converted into meaningful data, which can be an expensive and laborious process.

Finland, for example, has begun to collect biological samples from 500 000 individuals. One single database holds all phenotypic data, such as diagnosis and treatment, and all genotypic data, which is the mapping of the human genome.

In the UK, there is the Genomics Project, which has already sequenced the DNA (the coded parts of the human genome) of 100 000 patients. The UK Biobank are aiming to sequence the DNA of half a million brits.

Jonasson hopes that such ambitious initiatives will be imported to Norway to build the biobank infrastructure further and provide meaningful data for medical research. He adds that public-private collaborations will be key to drive and fund such large scale initiatives.

Biobank Norway is currently in the process of extending into its third phase and aims to continue to improve the biobanks, the partner institutions and global research collaborations in the future.

 

  • Do you need help with your research and innovation project using biobanks in Norway?
    E-mail Christian Jonasson.
  • For more information, please visit the official website of BioBank Norway.

 

Sign up to OCC newsletter

Kronikk: Dine helsedata kan styrke helsenæringen

Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

This opinion piece was first published on 9 May 2019 in Dagens Medisin, by Ketil Widerberg, General Manager at Oslo Cancer Cluster, and Christian Jonasson, Senior Adviser at NTNU. Both are also members of a work group for innovation and business development for the Health Data Program for the the Norwegian Directorate of eHealth. Please scroll to the end of this page for an English summary.

 

Vi får nye forretningsmodeller innen helse som er basert på digitalisering og persontilpasset medisin. Her kan Norge virkelig lede an!

Christian Jonasson, seniorforsker ved NTNU.

Christian Jonasson, seniorforsker ved NTNU.

Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

Ketil Widerberg, daglig leder i Oslo Cancer Cluster.

HELSE BLIR digitalisert og medisin blir tilpasset den enkelte pasienten. Dette er to megatrender som vil endre forretningsmodellen for helseindustrien. Forrige uke kom Stortingsmeldingen om nettopp helsenæringen. Den åpner for store muligheter for Norge.

I bilindustrien erstatter gradvis digital mobilitet den tradisjonelle boksen på fire hjul. Et eksempel er at Tesla blir verdsatt høyere enn tradisjonelle bilprodusenter blant annet for sin evne til kontinuerlig datainnsamling fra bilene. I helsenæringen vil vi se det samme.

 

NYE MODELLER. Med digital persontilpasset medisin vil nye forretningsmodeller vokse frem. Vi ser eksemplene daglig: Roche, et globalt legemiddelselskap, har nylig kjøpt opp helsedataselskapet Flatiron. Oppkjøpet gjorde de for å kunne utvikle nye kreftbehandlinger raskere, for nettopp tid er viktig for kreftpasienter som kjemper mot klokka. Et annet legemiddelselskap, AstraZeneca, har ansatt toppleder fra NASA. Norske DNVGL, som tradisjonelt har jobbet med olje, gass og shipping, har nå helsedata som et satsingsområde.

Helsemyndigheter erkjenner også endringen mot mer datainnsamling. Legemidler blir mer målrettede og brukes på stadig mindre undergrupper av pasienter. Dette utfordrer hva som er nødvendig kunnskapsgrunnlag for å gi pasienter tilgang til ny behandling. Mens det i dag er kunnskap om gjennomsnitt for store pasientgrupper som ligger til grunn for beslutninger om nye behandlingsmetoder, er det med persontilpasset behandling nettopp viktig å ta mer hensyn til individer og små undergrupper. De amerikanske helsemyndighetene (FDA) har derfor lagt frem retningslinjer for hvordan helsedata kan brukes som beslutningsgrunnlag for nye legemidler.

 

NORSKE FORTRINN. Legemiddelverket i Norge gir uttrykk for at de også ønsker å være i front i denne utviklingen – for også de ser at helsedata gir bedre beslutningsgrunnlag.

Hvordan kan så Norge lede an? Norge har konkurransefortrinn knyttet til et sterkt offentlig helsevesen, landsdekkende person- og helseregister og biobanker som kan knyttes sammen gjennom våre unike fødselsnummer. Dette er få land forunt! Derfor kan vi utnytte dette konkurransefortrinnet for å ta en posisjon i den store omveltningen av helsesektoren og helsenæringen.

Nedenfor følger noen forslag som vi mener vil styrke Norges stilling.

 

PLATTFORM. Vi kan starte med å lage en norsk dataplattform. Selskap leter globalt etter helsedata av god kvalitet. La oss utvikle en dataplattform hvor helsedata er raskt og sikkert tilgjengelig for norske og utenlandske aktører. Et eksempel er helseanalyseplattformen. Her må data gjøres tilgjengelig for alle aktører og for alle legitime formål. Samarbeidsmodeller må utvikles som sikrer at verdiskapingen blir i Norge og pasientene får bedre behandling.

Vi kan utvikle bedre økosystemer. Verdiskapingspotensialet for helsedata ligger i skjæringspunktet mellom offentlig og privat. Dagens offentlige forvaltere av helsedata må derfor samarbeide tettere med norske oppstartsbedrifter og internasjonale aktører.

 

INNSYN. Vi kan bruke personvern som konkurransefortrinn. Hver og en av oss eier våre egne helsedata. Derfor er det viktig med digitale plattformer som gir oss innsyn i egne helsedata.

Hvordan vi kommer til å bruke helsedata om få år, er vanskelig å forutse, akkurat som det var vanskelig å forutse hva konsesjonsutlysningen for oljeutvinning i 1965 ville føre til. Historien viser imidlertid at slike avgjørelser kan ha stor betydning for fremtidens verdiskapning i Norge, og for pasienter i hele verden. La oss derfor ikke overlate til tilfeldighetene hva vi i Norge gjør med våre helsedata.

 

 

English summary:

Digitalisation and precision medicine are influencing emerging business models in the health industry. It is time for Norway to lead the way!

As precision medicine develops, data gathering becomes ever more important. Instead of relying on results from a big patient group, cancer researchers are using big data to find out how treatments can be customised for small patient groups and individual patients.

Norway has a competitive advantage on health data: thanks to its strong public health sector, national health registers and biobanks that can be connected to unique personal ID numbers.

We suggest creating a common platform for Norwegian data, where high quality data can be accessed securely by legitimate national and international companies. Through collaborative models, we can ensure that the medical breakthroughs stay in Norway and benefit the patients. We need to develop better ecosystems that inspire simple collaboration between international key players, Norwegian start ups and the public agencies that handle health data.

Data privacy can be used as an asset. If we ensure everyone has complete access and insight into their own personal health data, people can be empowered to share it for the common good.

The decisions we make today will have great ramifications for the future value creation in Norway and for cancer patients across the world. We should not leave it up to chance.

 

Sign up to OCC newsletter

Anette Weyergang demonstrated the PCI technology to the Norwegian Prime Minister Erna Solberg during her visit to Oslo Cancer Cluster Innovation Park.

Radforsk to invest NOK 4.5 million in cancer research

Prime Minister Erna Solberg pays a visit to one of the cancer research labs.

Radforsk, the Radium Hospital Research Foundation, a partner of Oslo Cancer Cluster, is awarding several million Norwegian kroner to new research that fights cancer with light.

Radforsk is an evergreen investor focusing on companies that develop cancer treatment. Since its inception in 1986, Radforsk has allocated NOK 200 million of its profit back into cancer research at Oslo University Hospital. This year, four researchers will be awarded a total of NOK 4.5 million. One of them is Anette Weyergang, who will receive NOK 3.75 million over a three-year period.

“I’m so happy for this grant. As researchers, we have to find funding for our own projects. I didn’t have any funding for the project I have now applied and been granted funds for,” says Anette Weyergang.

Anette Weyergang is one of the researchers who has received funding from Radforsk.

Anette Weyergang is one of the researchers who has received funding from Radforsk.

Anette Weyergang is a project group manager and senior researcher in a research group led by Kristian Berg. The group conducts research in the field of photodynamic therapy (PDT) and photochemical internalisation (PCI). Radforsk’s portfolio company and Oslo Cancer Cluster member PCI Biotech is based on this group’s research.

What is PDT / PCI? Cancer research in the field of photodynamic therapy and photochemical internalisation studies the use of light in direct cancer treatment in combination with drugs, or to deliver drugs that can treat cancer cells or organs affected by cancer.

 

Weyergang is the first researcher ever to receive several million kroner over the course of several years from Radforsk.

“We have donated a total of NOK 200 million to cancer research at Oslo University Hospital, of which NOK 25 million have gone to research in PDT/PCI. We have previously awarded smaller amounts to several researchers, but we now want to use some of our funds to focus on projects we believe in,” says Jónas Einarsson, CEO of Radforsk.

By the deadline on 15 February 2019, Radforsk received a total of eight applications, which were then assessed by external experts.

 

The new research focuses on how to use light to release the cancer drugs more efficiently inside the cancer cells.

The new research focuses on how to use light to release the cancer drugs more efficiently inside the cancer cells.

 

New use of PCI technology

PCI is a technology for delivering drugs and other molecules into the cancer cells and then releasing them by means of light. This allows for a targeted cancer treatment with fewer side effects for patients.

Weyergang will use the funds from Radforsk to research whether PCI technology can be used to make targeted cancer treatment even more precise.

“The project aims to find a method for delivering antibodies to cancer cells using PCI technology. This has never been done before, and if we succeed, it can open up brand new possibilities for using this technology,” says Weyergang.

Initially, she will focus on glioblastoma, which is the most serious form of brain cancer. Glioblastoma is resistant to both chemotherapy and radiotherapy, and has a very high mortality rate.

“This is translational research, so human trials are still a long way off. We will now use both glioblastoma cell lines and animal experimentation to test our hypothesis. We do this to establish what is called a “proof of concept”, which we need to move on to clinical testing,” says Weyergang.

 

The other researchers who have received funding for PDT/PCI research from Radforsk in 2019 are:

  • Kristian Berg and Henry Hirschberg Beckman: NOK 207,500
  • Qian Peng: NOK 300,000
  • Mpuldy Sioud: NOK 300,000

 

What is Radforsk?

  • Since its formation in 1986, Radforsk has generated NOK 600 million in fund assets and channelled NOK 200 million to cancer research, based on a loan of NOK 1 million in equity back in 1986.
  • During this period, NOK 200 million have found its way back to the researchers whose ideas Radforsk has helped to commercialise.
  • NOK 25 million have gone to research in photodynamic therapy (PDT) and photochemical internalisation (PCI). In total, NOK 40 million will be awarded to this research.

 

Sign up to OCC newsletter

From left to right: Jacques Li, Sam Chong, Diana Murguia Barrios and Jason Yip studied how patient recruitment to clinical trials can be improved in Norway with both financial and non-financial incentives.

Should Norway implement a clinical trial league table?

The students in the picture are Jacques Li, a doctor and entrepreneur from France; Diana Murguia Barrios, an economist and political scientist from Spain; Jason Yip, a chemistry engineer from England; and Sam Chong, a lawyer and economist from Malaysia and Australia.

We asked four MBA students from Cambridge University to evaluate how patient recruitment practices in Norway can be improved.

The number of clinical trials in Norway has been declining over the last few years. There are many reasons behind this trend, but until now there have been few concrete solutions. With the number of cancer patients on the rise, there is a growing need for access to better treatments.

Oslo Cancer Cluster asked four students from Judge Business School at Cambridge University to research how the number of clinical trials in Norway can be improved. The students were Jacques Li, a doctor and entrepreneur from France; Diana Murguia Barrios, an economist and political scientist from Spain; Jason Yip, a chemistry engineer from England; and Sam Chong, a lawyer and economist from Malaysia and Australia.

“The number of clinical trials in Norway is less than half of the number in Denmark.”

The group focused on one of three factors that influence the number of clinical trials in Norway, namely: the patient recruitment practices. After a comparative analysis with other European countries, they came up with two main recommendations on how Norway can improve patient recruitment.

 

Image och doctors and nurses walking in corridor

How do we motivate hospitals and doctors to recruit more patients to clinical trials?

 

One: Motivating hospitals

The group compared patient recruitment in Norway to France, United Kingdom and USA. Norway was the only country where hospitals don’t have any non-financial incentives to recruit patients to clinical trials. If a hospital’s reputation could be improved in a concrete way by having clinical trials, patient recruitment could also be improved.

The group proposed to create a league table for all hospitals, with cancer trial participation as one of the metrics. This would create competition between hospitals, encourage collaboration between smaller hospitals and larger ones, and make information about clinical trials accessible to patients.

If hospitals were ranked against each other based on clinical trial output, they would more actively recruit into trials due to the reputational incentive.” 

The group also uncovered a misalignment between the funding source and the implementers of the clinical trials. Funding is passed from the Norwegian Health Ministry to the regional health authorities, instead of directly to the hospitals who conduct the trials. The group recommended that the hospitals need direct financial incentives to conduct the trials.

“Regional health authorities in Norway need to ensure that funding provided to them for research is passed down to the hospitals conducting clinical trials.” 

 

Two people holding hands.

How do we raise awareness among patients and doctors about clinical trial participation?

 

Two: Raising awareness

A second discovery in the report was the lack of awareness about clinical trials among both patients and doctors. Patients in Norway lack access to relevant information that would empower them to opt into clinical trials. There was similarly a lack of exposure to clinical trials among early career doctors and a lack of initiatives to collaborate on clinical trials among advanced career doctors.

“Raising awareness among stakeholders is key to improve clinical trial recruitment.” 

The students suggested working in partnership with patient organisations to raise awareness among patients. They recommended a national awareness campaign to inform where patients can find up-to-date information about clinical trials. All hospitals could keep lists of their ongoing clinical trials available on their websites.

If patients knew the benefits of clinical research, they would select a hospital that is ranked highly.” 

The group also provided recommendations to raise awareness among doctors to work on clinical trials. Rotational programs and supplementary courses on research methods and clinical trials may spark interest among medical students to pursue work in clinical trials. Seminars and workshops can help to both raise awareness and inspire collaborative efforts among doctors in their advanced careers.

 

Oslo Cancer Cluster wishes to extend a big thank you to everyone who agreed to be interviewed for this research project:

  • Ali Areffard, Medical team, Bristol Myers Squibb
  • Øyvind Arnesen, Chairman of the Board, Oslo Cancer Cluster
  • Siri Kolle, Vice President Clinical, Inven2
  • Jónas Einarsson, former Chairman of the Board of Oslo Cancer Cluster and one of the founders of Oslo Cancer Cluster Innovation Park
  • Maiken Engelstad, Deputy Director, Ministry of Health and Care Services
  • Katrine Bryne, Senior Advisor, Legemiddelindustrien (LMI)
  • Kristin Bjordal, Business Manager for Research Support and Research Manager in Oslo Hospital Service (OSS) and Chairman of the Board of NorCrin
  • Ida Kommandtvoll, Advisor, Department of Strategy and Analysis, The Norwegian Cancer Society
  • Knut Martin Torgersen and medical team, Merck
  • Steinar Aamdal, the founder of The Clinical Trial Department, Oslo University Hospital

 

View and download the following PDF of the Cambridge report to learn more.
Note: This is a short version of the report, the fuller version also includes an Appendix containing detailed information about all the underlying data and interview material. Please get in touch with Communications Adviser Sofia Lindén if you are interested in reading the full Appendix.

 

Sign up to OCC newsletter

Jeg vil gjerne legge lista høyt og foreslå en felles database for data fra kliniske studier, hvor både firmaer og myndigheter har tilgang til helsedata umiddelbart etter at hver pasient har fått sin behandling, skriver Ketil Widerberg.

Hvordan gjør vi våre mest intime data til gull?

Ketil Widerberg, general manager, OCC

The following opinion piece was written by Ketil Widerberg, General Manager at Oslo Cancer Cluster, and published in Aftenposten on 1 May 2019. It is a response to an opinion piece written by Nikolai Astrup, the Norwegian Minister of Digitalization, which was published on 22 April 2019. The texts are only available in Norwegian, but a short summary in English is available at the bottom of this page.

 

Helsedata er en voksende gullåre, men vi kan ikke grave i den uten videre.

 

I Aftenposten 17. april svarer digitaliseringsminister Nikolai Astrup (H) på en appell om våre verdifulle data.

Astrup påpeker at data ikke kan sammenlignes med olje, for det er ikke staten, men hver og en av oss, som eier våre egne personopplysninger.

Det gjelder i høyeste grad de mest intime av våre data: helsedata.

 

En gullåre av data

Helsedata er en voksende gullåre, men vi kan ikke grave i den uten videre.

Hadde vi ikke først bygd opp beskyttelse av norske data og kompetanse, ville ikke prosjekter som DoMore blitt til.

Forskerne i DoMore bruker avansert bildeanalyse for å gi mer presise kreftprognoser. Samtidig ville ikke prosjektet eksistert uten internasjonale data og kompetanse.

For næringen som jeg jobber i, helsenæringen, er spørsmålet hvordan vi skal unngå å falle i digitaliseringsfellen. Der har mediebransjen landet.

Facebook og Google får all verdens data gratis gjennom samtykke og tar dermed livsgrunnlaget fra tradisjonelle aktører.

 

Trenger god strategi for kunstig intelligens

For norsk helsenæring blir de to strategiene som digitaliseringsministeren snart lanserer, digitalisering i offentlig sektor og kunstig intelligens, svært viktige. I en strategi for offentlige data oppfordrer jeg derfor til at fremskritt innen presisjonsmedisin tas med.

Da Kreftregisteret ble etablert på 50-tallet, forsto ingen den fulle nytteverdien av et slikt register. I dag tiltrekkes forskere og bedrifter fra hele verden for å få bruke data derfra.

Det viser hvorfor vi også i dag bør samle inn mer helsedata enn vi kan dra nytte av umiddelbart.

Hvordan finner vi balansen mellom god bruk av helsedata for å skape næring og rå utnyttelse av store firmaer? Her trenger vi en god strategi også for kunstig intelligens, som tar inn over seg denne balansegangen i helsedata.

Kunstig intelligens gjør presisjonsmedisin mulig på et helt annet nivå enn vi er på i dag, med mye høyere presisjon i behandlingen.

 

Ressurs for pasienter

For fremtidens presisjonsbehandling er helsedata ressursen vi må samle på. Vi må samle inn helsedata som gjør behandlingen bedre for neste pasient. Og vi trenger en struktur av dataene der både firmaer og myndigheter har tilgang til dem.

Jeg vil gjerne legge lista høyt og foreslå en felles database for data fra kliniske studier, hvor både firmaer og myndigheter har tilgang til helsedata umiddelbart etter at hver pasient har fått sin behandling.

Dette kan bidra til raskere tilgang til ny behandling og bedre oppfølging av pasienter med sykdommer som kreft.

Data former kreftbehandling og skaper nye tilbud til pasienter. Hvordan sikrer vi verdien av dataene? Skal vi gi dem bort for å bygge forskning og industri, skal vi ta så mye penger som vi kan for dem, eller skal vi prøve å finne på noe midt imellom?

I arbeidet med de nye strategiene bør våre mest intime data bli diskutert – med sikte på å skape verdi og næring av dem.

 

 

Short summary in English:

The question Astrup raised in his opinion piece concerned how data sharing can be improved across the public sector in Norway.

Widerberg responds by highlighting how we can make use of our health data to create added value and a successful health industry, without allowing large multinational corporations exploit the data freely.

Artificial intelligence makes precision medicine possible on a much higher level than today. We need to collect health data in order to improve treatments for future patients.

Widerberg therefore proposes a database where health data from all clinical trials is made available to both private and public bodies. This would contribute to making better treatments available sooner and provide better follow-up to patients suffering from diseases, such as cancer.

 

Sign up to OCC newsletter

Supporting cancer research with IP rights

Two people working on computers.

Why are legal services an important part of Oslo Cancer Cluster? We asked Andrew Wright from Potter Clarkson to explain why they became a member.

 

Oslo Cancer Cluster helps to connect start ups and entrepreneurs in the cancer field to the legal service providers they need. There are many reasons why a law firm specialising in intellectual property (IP) rights is an important part of a cancer cluster. IP rights play an essential role in securing protection, and developing the value, in an idea or invention.

Andrew Wright, a partner in the law firm Potter Clarkson, member of Oslo Cancer Cluster.

Andrew Wright, a partner in the law firm Potter Clarkson, member of Oslo Cancer Cluster.

Andrew Wright, a partner in Potter Clarkson, explained why they became a member of Oslo Cancer Cluster:

“We have, for a long time, recognised the important developments in the field of oncology being pursued by members of the Oslo Cancer Cluster.

“This is an exciting time to be involved with Oslo Cancer Cluster, and Potter Clarkson thrives on opportunities to interact, and collaborate, with scientists and innovative companies that have ground-breaking ideas and an enterprising outlook.”

 

Why IP protection?

– To build value to attract investors and support ongoing development;

– To realise value in an invention by out-licencing to a commercial partner, in order to generate a funding stream; and/or

– To create exclusivity for the next stage of your commercial plans.

Source: Potter Clarkson

 

Supporting growth

A law firm with experts in IP rights can support innovators and entrepreneurs. They can provide guidance and assistance when seeking to obtain protection for new ideas, developments and inventions.

“Strong protection through relevant IP rights can be critical to the success of any start up or developing business. We believe that there is the potential for outstanding synergy between the needs of the members of Oslo Cancer Cluster and the support that Potter Clarkson offers.” Andrew Wright, Potter Clarkson

 

Building value

Early-stage companies in the cancer field often face great challenges when commercialising their products. Their ideas may only exist on a conceptual level or their products may be at a pre-clinical stage. It can take a company many years to bring a product to market, after developing their technologies and seeking the necessary approvals. It is critical that these companies can fund the ongoing development during this period.

“The decision of whether or not to invest, and the scale of any investment, will typically be based on how well the technologies that form the core of a company have been protected by suitable IP rights.” Andrew Wright, Potter Clarkson

 

Patent protected

Patents are often the main form of IP right. The objective of a patent application is typically to obtain protection for the general concept that underlies an invention, to provide a legally-enforceable right that can prevent competitors either from copying the invention itself, or from launching a closely-related equivalent based on the same concept.

Strong patent rights can provide companies with the ability to control the future commercialisation of their inventions. An owner of patent rights can also negotiate with other companies for licensed access to their invention, whether they want to commercialise it directly or develop it towards a collaborative product.

Entrepreneurs or start ups can apply for patents themselves through the European Patent Office, but it is often a complicated process. Therefore, it may be a good idea to get some advice from a patent professional.

 “Having patent protection, or the opportunity to obtain patent protection, provides strong and commercially-relevant coverage for the core technology of the company and being able to present a plan for generating and supporting future IP, can be key to the success of a Lifescience start up.” Andrew Wright, Potter Clarkson

 

Biotech meets law

All the patent professionals at Potter Clarkson hold degrees in scientific subjects, for example in biotechnology or pharmaceuticals. Their professionals often work across disciplines, which is good as Iinovations do not always fit ‘neatly’ into only a single field of technology.  For example, computer-implemented inventions are increasingly used in the field of therapies and diagnostics, and medical devices become ever more important in the delivery of therapies. In this case, the patent professional needs the experience to work across such inter-disciplinary fields.

“We pride ourselves on being technically knowledgeable, on having the ability to quickly immerse ourselves in your specialist area of science, to rapidly understand your invention, and to ask the right questions.” Andrew Wright, Potter Clarkson

 

For more information about the members of Oslo Cancer Cluster that offer legal services or advice on IP rights, please visit their official websites:

 

Sign up to OCC newsletter