Simone Mester, a cancer researcher at Oslo University Hospital, is mentoring students from Ullern Upper Secondary School. Photo: Elisabeth Kirkeng Andersen

Mentor meeting with Mester

Simone Mester mentoring students in the lab.

A few lucky Ullern students got to learn about cancer research from the PhD student Simone Mester at Oslo University Hospital.

The science and research programme at Ullern Upper Secondary School is completely new and the 32 students in the first class have received four mentors who will share their knowledge and experience with them. Early in December, the students were divided among the four mentors and got to visit them at their workplaces to hear more about what they do.

Simone Mester is a former student of Ullern Upper Secondary School and is today a cancer researcher at Rikshospitalet (Oslo University Hospital). Along with the three other mentors from the Oslo Cancer Cluster ecosystem, she has agreed to be a mentor for the students of the science and research programme at Ullern. Earlier in December, eight students visited her at her job.

“This is where I work,” Simone said as we arrived at the Institute for Immunology, which is located right next to Rikshospitalet.

Simone began the visit by telling the students about her background and the road that led her to where she is today.

Simone Mester tells Ullern students about how she started to do cancer research.

Simone Mester (above to the left) tell the Ullern students that she is part of the SPARK programme at the University of Oslo. Photo: Elisabeth Kirkeng Andersen

“I graduated from Ullern in 2012. That is when I got to do two work placements at the Radium Hospital – in Clinical Radiation Biology and Tumour Biology. That was the first time I got an impression of what everyday life for a researcher can be like and it was exciting!” said Simone.

She says that she combined the subjects mathematics, physics, chemistry and biology so that she would be able to study medicine. But as the application date drew closer, she became more and more unsure.

“I talked with Ragni, who is your teacher too, and she recommended that I study molecular biology at the University of Oslo. At the time, I didn’t fully understand what I was getting myself into and especially why I had to study all that physics,” said Simone.

During the course of her bachelor degree, Simone was still unsure and spent a lot of time with advisers at the Institute of Biology to get guidance on the best way forward. She decided to study a master degree and was included in a research group led by professors Inger Sandlie and Jan Terje Andersen, where she remains today as she is completing her PhD.

Researching new cancer medicine

“During my master degree, I wrote about how to tailor the duration of the effect of medicines and pharmaceuticals, and that is what I am still researching in my PhD. A lot of my time here is in the laboratory, where I am planning and conducting experiments on cells and mice, to see if I can achieve what I want,” Simone said.

“Now, I will show you what I spend most of my time on. It is about making proteins, so now I will show you the principal, and afterwards you can try to do the same in the lab. Moreover, you will meet a master student, Anette Kolderup, who will tell you about CRISPR,” said Simone.

CRISPR is short for “clustered regularly interspaced short palindromic repeats”. It is a family of DNA sequences found within the genomes of prokaryotic organisms, such as bacteria and archaea.

Quickly and pedagogical she shows the students the principals for modifying proteins through DNA modification, growing, amplifying and splitting cells.

“Now we will go to the lab, so you can try this yourselves,” said Simone.

We go one floor up, where there are offices and laboratories. The four girls go to Anette, who will show them what CRISPR is and how she uses the method in her master thesis, while the boys will start in the cell lab to make the same experiment that Simone just showed them.

Caption: Aleksander tries pipetting when he is working in the lab together with Simone. It is important to have a steady hand.

Aleksander tries to handle the pipette when he is working in the lab together with Simone. It is important to have a steady hand. Photo: Elisabeth Kirkeng Andersen

“Inside this hood, the work environment is completely sterile, so you need to wear lab coats and sanitize all the equipment and keep it inside the hood while we are working,” Simone explained.

Aleksander is the first to try and Simone shows him step by step how he can retrieve the proteins from a bottle she has prepared. Everyone soon understands that lab work is a craft that requires skillful hands. It is important to stay focused and remember which solutions that should be added and how, and when the pipettes should go on or off. Aleksander laughs when he has to change an unused pipette that he has touched, even with gloves on it is not allowed.

Then the students switch places and everyone gets to try their hands at everything. Two hours pass by quickly and a very happy group of students with their teacher Ragni leave to go home again.

Click here to sign up for Oslo Cancer Cluster Newsletter

Students from the media and communications program at Ullern Upper Secondary School helped to create the podcasts Radium and Utbytte at the DNB Nordic Healthcare Conference 2019.

Students helped create podcast

Students at the DNB Nordic Healthcare Conference.

Our school collaboration project inspires science and health communication.

Ullern students were thrown head first into a live work environment this week. They gave technical assistance to the making of the podcasts Radium and Utbytte at the DNB Nordic Healthcare Conference 2019.

All the students are currently studying the media and communications program at Ullern Upper Secondary School, including a class on sound design. As an extra subject, they also started their own youth companies Marconi Media UB and Audio Mind UB.

Radium held a podcast marathon together with the DNB podcast Utbytte at this year’s conference, with six different sessions, interviewing CEOs and investors. Throughout the day, the Ullern students were expected to sound check, record, and edit the podcast – all on their own.

The students attended a planning meeting one week earlier. They also arrived the evening before to rig the set: a glass studio in the middle of the conference area.

The participants in the podcast Radium and Utbytte at DNB Nordic Healthcare Conference 2019 in the glass studio.

The Ullern students helped to rig the podcast studio the night before the conference.

“It is a really nice experience, because we are thrown into the real word and do things in practice,” Andrea Asbø Dietrichson from Marconi Media UB explained. “We have to do everything ourselves, even though we are beginners, but we are learning!”

“It has been interesting to hear what they are talking about (in the studio) and learn how it is to work during such a big event,” Theo Rellsve from Audio Mind UB added. “It is the largest event we have been to, with lots of people and things happening all the time. We are happy to take part!”

Ullern students recording the podcasts Radium and Utbytte at DNB Nordic Healthcare Conference

The Ullern students had to think on their feet to solve problems while recording the podcast.

 

The aim of the school collaboration project between Ullern Upper Secondary School and Oslo Cancer Cluster is to inspire students to develop their talents. One aspect of the project is to give students a taste of what real working life is like.

“Personally, I would like to work in media,” Andrea said. “It is really inspiring to be here. Media and communications is a broad subject, but sound design is something not a lot of people know.”

“Audiomind has a clear vision about our future as a company. We are happy that we can get this experience and use it towards developing the company further,” Theo said. “… And create the best podcast recording company in Norway.”

Elisabeth Kirkeng Andersen, Communications Specialist for Radforsk and one of the persons behind the podcast Radium, was very satisfied with the work the students had performed. She gave them a top score.

“They have everything under complete control,” she said. “It is really fun to see their learning curve. They only studied sound design for a few months, but they have already helped at two live shows and they are always calm and service-minded.”

Student helping in the glass studio.

Elisabeth Kirkeng Andersen was impressed by how helpful and service-minded the students from Ullern were.

Want to find out more?

 

Professor Kjersti Flatmark introduces the Ullern students to different cancer treatments, with a focus on colon cancer, during a theme day at Ullern Upper Secondary School. Photo: Elisabeth Kirkeng Andersen

Who wants to be a doctor?

A cancer doctor speaking to a room of students.

We join forces with Ullern Upper Secondary School and Oslo University Hospital every year to arrange theme days for students, so they can get a sense of what it is like to be a doctor.

On 18 November 2019, students from the health program with specialisation in biology and chemistry at Ullern Upper Secondary School, gathered in Kaare Norum Auditorium at Oslo Cancer Cluster Innovation Park to learn more about opportunities in medicine. The initiator is Truls Ryder, father of a former student at the school. Ryder is a surgeon at the Norwegian Radium Hospital and has this year once again planned theme days for the students together with his colleagues.

For almost five hours, the Ullern students listened to some of the best oncologists in Norway talk about how they treat cancer patients affected by different forms of cancer. The students are studying either science or health subjects in their third year.

The theme day is a part of the close collaboration between Ullern Upper Secondary School and the Norwegian Radium Hospital, Oslo University Hospital. For two days, 18 of the students who consider applying to medical or nursing school will follow the oncologists around the different departments of the Norwegian Radium Hospital.

“The students who have been chosen to job shadow are in their last year and will soon choose their next program of study,” Bente Prestegård said. She is the project manager for the school collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster.

The purpose of the job shadowing is that students who participate will get an inside look into the opportunities that exist in medical subjects before choosing what to study next.

A fantastic initiative

Truls Ryder is the initiator behind the theme day and the following job shadowing, like he was last year. His children have gone to Ullern Upper Secondary School and he works as an attending physician at the Norwegian Radium Hospital.

“Thank you to the initiator Truls Ryder and his colleagues who have dedicated two days for this. It was really successful last year and we are incredibly happy to be able to offer the students this opportunity again,” Prestegård said.

Prestegård has contributed to the planning of the theme days with her long experience from other projects between members of Oslo Cancer Cluster and the school.

You can read about last year’s theme day and job shadowing here.

A varied program

The theme day today was spent in Kaare Norums Auditorium from 11:30 am to 4:00 pm. During these hours, the students have gained an in-depth introduction to modern cancer treatments, from radiology to plastic surgery, and what it is like to be a cancer patient and receive treatment.

“I look forward to the program myself, because there are many skilled experts, who will present what they do in cancer treatment and more. The goal with such a broad program is to give the students the greatest possible understanding of all the different directions and opportunities that medical study can offer,” said Ryder.

Program (Monday 18 November 2019):

11:30-11:55 Welcome, with Attending Physician Truls Ryder

11:55-12:20 Cancer treatment with focus on colon cancer, with Professor Kjersti Flatmark

Break

12:30-12:55 “Fight HPV” with Attending Physician Ameli Trope from Kreftregisteret

12:55-13:20 What is anesthesiology? with Professor Ulf Kongsgaard

Break

13:40-14:05 Melanoma, with Attending Physician Anna Winge-Main

14:05-14:30 Plastic surgery – more than just cosmetics! with Head of Clinic and Attending Physician Kim Tønseth

Break

14:40-15:05 Radiology – More than just x-rays! with Attending Physician Marianne Fretheim

15:05-15:30 What is it like to be a patient? with Jeanett Hoel, Chairman of the Norwegian Gynaecological Cancer Society and Attending Physician Kristina Lindemann

15:30-15:45 Summary and practical information concerning clinical rotation, with Attending Physician Truls Ryder

Sign up to OCC monthly newsletter!

From left to right: Simone Mester, PhD student at UiO, Øyvind Kongstun Arnesen, CEO of Ultimovacs, Jonas Einarsson, CEO of Radforsk and Janne Nestvold, Laboratory Manager at Oslo Cancer Cluster Incubator, met the Ullern students of the researcher program.

Meet the mentors

The mentors of the student research program at Ullern Upper Secondary School meet the students for the first time.

Read the questions and answers from when the students at Ullern Upper Secondary School met their mentors for the very first time.

In the middle of October, 32 students at the researcher program at Ullern Upper Secondary School got to meet their four mentors for the next year. After a short introduction, there were many questions from the students to the mentors. It took an hour and a half before their curiosity settled down and it was time for pizza.

Simone Mester: “I am a former student of Ullern Upper Secondary School and now I am doing a PhD in molecular biology. In the long term, I could imagine working in the private sector developing pharmaceuticals.”

Øyvind Kongstun Arnesen: “I am a doctor and worked many years in Lofoten. After that, I worked some years as a surgeon in an emergency room, before I began working for a large German pharmaceutical company called Boehringer Ingelheim. Eight years ago, I became CEO for Ultimovacs. Ultimovacs are trying to develop the worlds first cancer vaccine.”

Jónas Einarsson: “I am a doctor, and did the first part of my medical degree on Iceland, because my grades weren’t the best. Then, I worked many years as a general practitioner in Lardal, before moving to Oslo and becoming the manager of the first private hospital in Norway. In parallel with this, I did a degree in economy and management at BI. Finally, I became the CEO of Radforsk, who among other things, initiated the Oslo Cancer Cluster Innovation Park and this school collaboration.”

Bjørn Klem: Bjørn is the fourth mentor, but he was unfortunately ill during the first meeting. Janne Nestvold, Laboratory Manager at Oslo Cancer Cluster Incubator, came in his place. Nestvold has a PhD and has worked as a researcher for many years.

 

After the introductions, the teachers at the researcher program, Ragni Fet and Monica Flydal Jenstad held a short presentation of the upcoming work with the mentors.

Then, there were several questions from the audience.  We were really impressed by the amount and quality of the questions, that concerned both education, job opportunities and, research and development, which both Kongstun and Mester are a part of. The questions rained down and the answers came in a session that continued for over an hour and a half. You can read some of them below. Then it was time for some pizza and mingle.

The next time the students and the mentors will meet will be in the beginning of December. The students will meet in the mentors’ workplaces and see with their own eyes what they do on an everyday basis.

 

Questions and answers:

What kind of medical specialisation does Jónas and Øyvind have?

“We are both general practitioners and have not specialised. You do not have to.”

 

What kinds of jobs can you do after you are finished, Simone?

Simone: “I can do a postdoc to become a researcher in academia. I am still a student while I am doing my PhD, but I receive a salary. It is normal to do two postdocs, then you can become group leader or professor. I don’t think I will follow that route, I would much rather work in a private company or start something myself. I think that seems more exciting.”

Jónas: “Simone will get a job immediately in one of our companies if she wants it.”

 

Are there many developments every day to find a cancer vaccine?

Jónas: “It takes time, so the short answer is no.”

 

What is the greatest challenge with the cancer vaccine that Ultimovacs are developing?

Øyvind: “To make it work? A good and difficult question.”

Øyvind explained further about the development and testing of the vaccine at Ultimovacs.

 

What is your PhD about, Simone?

Simone: “I develop technology that prolongs the half-life of medicines. It is a patient-focused PhD, since it is a big inconvenience for the patient to take medicines often, but I hope we can succeed in prolonging the half-life so that patients can take the medicine once a week or once a month.”

 

What should one study if one wants to work with medical development or pharmaceutical development?

Jónas: “Molecular biology, physiology, IT, physics, chemistry, biology, statistics  – there are many opportunities.”

Øyvind: “In our company, we have physiologists, doctors, protein chemists, dentists and pharmacists working right now.”

 

When you went to upper secondary school, did you know that you would be doing what you do today?

Jónas: “I chose the natural science, but did not know anything else.”

Øyvind: “I only knew I wanted to study natural science.”

Simone: “I was thinking about studying a medical degree, but I am happy that I chose molecular biology.”

Janne: “I thought about becoming a researcher and thought it seemed exciting. You should absolutely think widely and not just the easiest solution when you are still in upper secondary school. You will benefit from that when you begin to study at university.”

 

Have you always been interested in biology, or was there something special you saw that made you excited about it? 

Jónas: “Yes, always.”

Øyvind: “Biology in itself is very fascinating. There is so much we do not know, like where memories are stored in the brain, for example. We know very little about how the body works, so that is very fascinating.”

 

The cancer vaccine you are developing, will it work against all cancers or only specific types of cancer?

Øyvind: “It will work to treat and protect against most cancer types.”

 

What did Bjørn do in PhotoCure, the company he worked for before becoming manager for Oslo Cancer Cluster Incubator?

Jónas: “He was Head of Research. He is a very smart guy, and he has also worked a lot with the regulatory side.”

 

Sign up to OCC monthly newsletter

Thermo Fisher Scientific Norway was one of many stops during the guided tours through Oslo Cancer Cluster Innovation Park for students of Ullern Upper Secondary School.

A peak into the cancer research world

ThermoFisher Scientific Norway lectures students at Ullern

Ullern Upper Secondary School is unique, because it shares its building with world-class cancer researchers. Last month, all new Ullern students got to experience this first-hand.

This year’s School Collaboration Days in Oslo Cancer Cluster Innovation Park were held right before the autumn holiday. All the first-year classes at Ullern Upper Secondary School were given a guided tour around the Innovation Park to get to know the companies that they share their everyday lives with.

The purpose of the School Collaboration Days is to give the first-year students at Ullern Upper Secondary School an understanding of what the different companies in the Innovation Park and departments of Oslo University Hospital do.

The common denominator for all of them is cancer and many are developing new cancer treatments. While the Cancer Registry of Norway are collecting statistics and doing cancer research, Sykehusapotekene (Southern and Eastern Norway Pharmaceutical Trust) produce chemotherapy and antibodies for patients that are admitted to The Norwegian Radium Hospital and the Department of Pathology (Oslo University Hospital) gives the cancer patients their diagnoses.

 

IN PICTURES

The student guided tours of Oslo Cancer Cluster Innovation Park

Jonas Einarsson lecturing to students at Ullern

True to tradition, Jónas Einarsson, CEO of the evergreen fund Radforsk, opened the School Collaboration Days in Kaare Norum auditorium with a common lecture. In this image, Einarsson is talking about the development of the Montebello area, which Oslo Cancer Cluster Innovation Park is a part of. The first Radium Hospital was opened in 1932 and the following year Ullern School was moved from Bestum to the same place that houses Oslo Cancer Cluster Innovation Park today.

 

Kreftregisteret lecturing to students at Ullern.

Elisabeth Jakobsen, Head of Communications of the Cancer Registry of Norway, tells the first year students about what they do and the risk factors for developing cancer. Also, she asked the students several questions about how to regulate the sales of tobacco, e-cigarettes and many other things.

 

Thor Audun Saga is the CEO of Syklotronsenteret (“the Norwegian medical cyclotron centre”). He told the students about what they do, what a cyclotron is and how they use cyclotrons to develop cancer diagnostics.

 

ThermoFisher Scientific Norway lectures students at Ullern

The management of Thermo Fisher Scientific Norway are also housed in the Oslo Cancer Cluster Innovation Park. They told the students about the Norwegian invention called “Ugelstadkulene”. This is both the starting point for million of diagnostic tests across the world and revolutionary (CAR T) cancer treatments, 45 years after they were invented.

 

Students guided through the Oslo Cancer Cluster Incubator Laboratory

The tour was ended with a walk through the laboratory of the Oslo Cancer Cluster Incubator. The students were given an inside look at the work done and instruments used by the cancer researchers in the lab. This area is only one or two floors above their regular class rooms. The student could see first-hand the opportunities there are in pursuing a career in research, entrepreneurship and innovation.

From left to right: Bente Prestegård, Project Manager at Oslo Cancer Cluster, Henrikke Thrane-Steen Røkke, student, Peder Nerland Hellesylt, student, and Ragni Fet, Teacher at Ullern Upper Secondary School are happy to see the launch of the researcher program.

Educating the cancer researchers of tomorrow

Bente Prestegård from Oslo Cancer Cluster and Ragni Fet from Ullern Upper Secondary School with two of the students in the research program.

Ullern Upper Secondary School and Oslo Cancer Cluster are paving the way for students to become the researchers of the future.

A new program has been launched this autumn for Ullern students who wish to learn how researchers work. It will qualify students for university studies and specialise them in biomedical research, technology and innovation. It is the only researcher program for upper secondary school in Norway.

“The researcher program at Ullern will be a place where students are encouraged and guided to become independent students, with a need to explore, an understanding of methods and a desire to learn,” said Ragni Fet, teacher at Ullern Upper Secondary School. “They will learn to gather good and reliable information, they will do research in practice through varied experiments, and they will gain real insight into job opportunities in the research industry.”

The program is a joint initiative between Oslo Cancer Cluster and Ullern Upper Secondary School, who have been collaborating since 2009. This has offered students in the natural sciences, health, media and electricity special opportunities to learn science subjects outside a traditional classroom setting.

“The purpose of launching a researcher program at Ullern Upper Secondary School is to recruit the researchers, scientists and entrepreneurs of the future,” said Bente Prestegård, Project Manager at Oslo Cancer Cluster. “We know that these jobs are needed, and we want to teach students about what it means to be a researcher or entrepreneur. With better insight into the professions, the students will be able to make a safe career choice.”

 

With a passion for science

About 30 students have already begun this unique program at Ullern Upper Secondary School. One of them is Henrikke Thrane-Steen Røkke.

“I chose the researcher program because I personally enjoy studying the natural sciences and innovation, and I wanted more of those subjects. I had entrepreneurship as an elective at secondary school and thought it was a lot of fun. I think it seemed very exciting and wanted to learn more,” Henrikke explained. “I hope I can gain insight into what it is like to work as a researcher. I hope we can see and experience a lot of it in practice and to work in depth with some subjects in certain areas.”

The program is especially well suited for students with an interest in the natural sciences, such as Peder Nerland Hellesylt, who also recently begun the program.

“I applied to this program because I have always had an interest for the natural sciences and mathematics,” Peder said. ”I think this program is very interesting because we aren’t just sitting and writing, but get practical tasks too, for example experiments.”

 

Mixing theory with practice

Ullern Upper Secondary School is located right next to The Norwegian Radium Hospital, The Institute for Cancer Research, The Norwegian Cancer Registry and the Oslo Cancer Cluster Incubator, with its over 30 big and small companies. The students are therefore never far from world class researchers. This offers the unique opportunity to take advantage of the co-localisation and use mentors from the research milieu in the teaching.

“Through the collaboration with Oslo Cancer Cluster, we will obtain external lecturers to the class rooms; bring the students to multiple, exciting innovation companies and laboratories; and the students will attempt real research experiments themselves. We are raising the level and are ambitious for the sake of the students,” Ragni Fet said.

 

Sign up to OCC newsletter

Emmy and Benedicte learned about research into neuroscience and how to use modern medical technology, such as CRISPR, when on work placement with researcher Marianne Fyhn and her colleagues at the University of Oslo. Photo: Monica Jenstad

Learning about the human brain

Emmy and Benedicte learned about research into neuroscience and how to use modern medical technology, such as CRISPR, when on work placement with researcher Marianne Fyhn and her colleagues at the University of Oslo. Photo: Monica Jenstad

Oslo Cancer Cluster and Ullern Upper Secondary School arranged a work placement for students to learn about neuroscience at the University of Oslo.

Four biology students from Ullern Upper Secondary School spent two great days on work placement with some of the world’s best neuroscientists at the University of Oslo. In Marianne Fyhn’s research group, the students tried training rats and learned how research on rats can provide valuable knowledge about the human brain.

The Ullern students, Benedicte Berggrav, Lina Babusiaux, Maren Gjerstad Høgden and Emmy Hansteen, first had to dress in green laboratory clothes, hairnets and gloves. They also had to leave their phones and notepads behind, before enterring the animal laboratory where Marianne Fyhn and her colleagues work. Finally, they had to walk through an air lock that blew the last remnants of dust and pollution off them.

On the other side was the most sacred place for researchers: the newly refurbished animal laboratory. It is in the basement of Kristine Bonnevies Hus on the University of Oslo campus. We used to call it “Bio-bygget” (“the bio-building”) when I studied here during the ‘1990s.

 

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

Researcher Kristian Lensjø showed the four excited biology students into the most sacred place: the animal lab.

It is the second day of the students’ work placement with Marianne. The four biology students, who normally attend the second year of Ullern Upper Secondary School, have started to get used to their new, temporary jobs. They are standing in one of the laboratories and looking at master student Dejana Mitrovic as she is operating thin electrodes onto the brain of a sedated rat. PhD student Malin Benum Røe is standing behind Dejana, watching intently, giving guidance and a helping hand if needed.

“We do this so we can study the brain cells. We will also find out if we can guide the brain cells with weak electrical impulses. This is basic scientific research. In the long term, the knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm,” Marianne explained.

“The knowledge can help to improve how a person with an amputated arm can control an artificial prosthetic arm.”

Dejana needs to be extremely precise when she connects the electrodes onto the rat’s brain. This is precision work and every micrometre makes a difference.

 

Training rats

The previous day, Maren, Benedicte, Lina and Emmy helped to train the rat on the operating table on a running course. Today, the Ullern students will train the other rats that haven’t had electrodes surgically connected to their brains yet.

“We will train the rats to walk in figures of eight, first in one direction and then the other”, the students explained to me.

We remain standing in the rat training room for a while, talk with Dejana and train some of the rats. Dejana tells me that the rats don’t have any names. After all, they are not pets, but they are cared for and looked after in all ways imaginable.

“It is very important that they are happy and don’t get stressed. Otherwise, they won’t perform the tasks we train them to do,” says Dejana. She and the other researchers know the animals well and know to look for any signs that may indicate that the rats aren’t feeling well.

“It is very important that they are happy and don’t get stressed.”

I ask the students how they feel about using rats for science.

“I think it is completely all right. The rats are doing well and can give us important information about the human brain. It is not okay when rats are used to test make-up and cosmetics, but it is a whole different matter when it concerns important medical research,” says Emmy and the other biology students from Ullern nod in agreement.

 

Understanding the brain

Marianne is the head of the CINPLA centre at the University of Oslo, where Maren, Benedicte, Lina and Emmy are on work placement for two days. Four other Ullern students, Henrik Andreas Elde, Nils William Ormestad Lie, Hans Christian Thagaard and Thale Gartland, are at the same time on a work placement with Mariannes research colleague, Professor of Physics Anders Malthe-Sørenssen. They are learning about methods in physics, mathematics and programming that help researchers to better understand the brain.

“CINPLA is an acronym for Centre for Integrative Neuroplasticity. We try to bring together experimental biology with calculative physics and mathematics to better understand information processing in the brain and the brain’s ability to change itself,” says Marianne.

Physics, mathematics and programming are therefore important parts of the researcher’s work when analysing what is happening in the rat’s brain.

If you think that research on rats’ brain cells sounds familiar, then you are probably right. Edvard and May-Britt Moser in Trondheim received the first Norwegian Nobel Prize in Medicine in 2014. The award was given to them for their discovery of a certain type of brain cells, so called grid cells. The grid cells alert the body to its location and how to find its way from point A to point B.

Marianne did her PhD with Edvard and May-Britt, playing an essential role in the work that led to the discovery of the grid cells. Marianne was therefore very involved in Norway securing its first Nobel Prize in Medicine.

 

The dark room

Another room in the animal section is completely dark. In the middle of the room, there is an enormous box with various equipment. In the centre of the box, there is a little mouse with an implant on its head.

In this test room, there is an advanced microscope. It uses a laser beam to read the brain activity of the mouse as it alternates between running and standing still on a treadmill.

The researcher Kristian Lensjø is back from a longer study break at the renowned Harvard University and will use some of the methods he has learned.

“I will train the mouse so that it understands that for example vertical lines on a screen mean reward and that horizontal lines give no reward. Then I will look at which brain cells are responsible for this type of learning,” says Kristian.

The students stand behind Kristian and watch the mouse and the computer screen. When the testing begins, they must close the microscope off with a curtain so that the mouse is alone in the dark box. Kristian assures us that the mouse is okay and that he can see what the mouse is doing through an infra-red camera.

“This room and the equipment is so new, we are still experiencing some issues with the tech,” says Marianne. But Christian fixes the problem and suddenly we see something on the computer screen that we have never seen before. It is a look into the mouse’s brain while it runs on the treadmill. This means that the researchers can watch the nerve cells as the mouse looks at vertical and horizontal lines, and detect where the brain activity occurs.

 

Research role models

The students from Ullern know they are lucky to see how cutting-edge neuroscience is done in real life. Marianne and her colleagues are far from nobodies in the research world. Bente Prestegård from Oslo Cancer Cluster and Monica Jenstad, the biology teacher at Ullern who coordinates the work placements, made sure to tell the students beforehand.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level. They can see that the people behind the research are nice and just like any normal people. When seeing good role models, it is easier to picture a future in research for oneself,” says Monica.

“This is a fantastic and unique opportunity for students to get a look into science on a high international level.”

Monica and Marianne have known each other since they were master students together at the University of Tromsø almost twenty years ago.

“I know Marianne very well, both privately and professionally. She is passionate about her research and about dissemination and recruitment. She also works hard to create a positive environment for her research group. Therefore, it was natural to ask Marianne to receive the students and it wasn’t difficult to get her to agree,” says Monica.

Back in the first operating room, Dejana and Malin are still operating on the rats. They will spend the entire day doing this. It takes time when the equipment needs to be found and sterilised, the rats need to be sedated and then operated on as precisely as possibly. It is past noon and time for lunch for Marianne, Kristian and the Ullern students on work placement.

Before I leave them outside Niels Henrik Abels Hus at the Oslo University Campus, I take a picture to remember the extra-ordinary work placement. And not least: to store a picture of the memory in my own brain.

 

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

Finally, time for lunch! From the left: Emmy Hansteen, Benedicte Berggrav, researcher Marianne Fyhn, Lina Babusiaux, Maren Gjerstad Høgden and researcher Kristian Lensjø. Photo: Elisabeth Kirkeng Andersen.

 

Sign up to OCC newsletter

Cathrine Wahlström Tellefsen gave a talk to teachers on how programming can be used to teach science subjects in upper secondary schools.

Introducing programming to the curriculum

KUR programming event for teachers to learn to teach programming.

Programming is not only for computer hackers, it can also help teachers to engage their students in science subjects and inspire start ups to discover new cancer treatments.

 

Almost 60 teachers working in upper secondary schools in Oslo visited Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School one evening in the end of March. The topic for the event was programming and how to introduce programming to the science subjects in school.

“The government has decided that programming should be implemented in schools, but in that case the teachers first have to know how to program, how to teach programming and, not least, how to make use of programming in a relevant way in their own subjects.”

This was how Cathrine Wahlström Tellefsen opened her lecture. She is the Head of Profag at the University of Oslo, a competence centre for teaching science and technology subjects. For nearly one hour, she talked to the almost 60 teachers who teach Biology, Mathematics, Chemistry, Technology, Science Research Theory and Physics about how to use programming in their teaching.

 

What is KUR? KUR is a collaborative project between Oslo Cancer Cluster, Ullern Upper Secondary School and other schools in Oslo and Akershus. It aims to develop the skills and competence of science teachers. Every six months, KUR arranges a meeting where current topics are discussed.

 

Programming and coding

“Don’t forget that programming is much more than just coding. Computers are changing the rules of the game and we have gained a much larger mathematical toolbox, which gives us the opportunity to analyse large data sets,” Tellefsen explained.

Only a couple of years ago, she wasn’t very interested in programming herself, but after pressures from higher up in her organisation, she gave it a shot. She has since then experienced how programming can be used in her own subject.

“I have been a Physics teacher for many years in an upper secondary school in Akershus, so I know how it is,” she said to calm the audience a little. Her excitement over the opportunities programming provides seemed to rub off on some of the people in the room.

“In biology, for example, programming can be used to teach animal population growth. The students understand more of the logic behind the use of mathematical formulas and how an increase in the carrying capacity of a biological species can change the size of its population dramatically. My experience is that the students start playing around with the numbers really quickly and get a better understanding of the relationships,” said Tellefsen.

When it was time for a little break, many teachers were eager to try out the calculations and programming themselves.

 

Artificial intelligence in cancer treatments

Before the teachers tried programming, Marius Eidsaa from the start up OncoImmunity (a member of Oslo Cancer Cluster) gave a talk. He is a former physicist and uses algorithms, programming and artificial intelligence every day in his work.

“OncoImmunity has developed a method that can find new antigens that other companies can use to develop cancer vaccines,” said Eidsaa.

He quickly explained the principals of immunotherapy, a cancer treatment that activates the patient’s own immune system to recognise and kill cancer cells, which had previously remained hidden from the immune system. The neoantigens play a central role in this process.

“Our product is a computer software program called Immuneprofiler. We use patient data and artificial intelligence in order to get a ranking of the antigens that may be relevant for development of personalised cancer vaccines to the individual patient,” said Eidsaa.

Today, OncoImmunity has almost 20 employees of 10 different nationalities and have become CE-marked as the first company in the world in their field. (You can read more about OncoImmunity in this article that we published on 18 December 2018.)

The introductory talk by Eidsaa about using programming in his start up peaked the audience’s interest and the dedicated teachers eagerly asked many questions.

 

Programming in practice

After a short coffee break, the teachers were ready to try programming themselves. I tried programming in Biology, a session that was led by Monica, a teacher at Ullern Upper Secondary School. She is continuing her education in programming now and it turns out she has become very driven.

“Now you will program protein synthesis,” said Monica. We started brainstorming together about what we needed to find out, which parameters we could use in the formula to get the software Python to find proteins for us.

Since my knowledge in biology is a little rusty, it was a slow process. But when Monica showed us the correct solution, it was surprisingly logical and simple. The key is to stay focused and remember to have a cheat sheet right next to you in case you forget something.

 

Sign up to OCC newsletter

Arctic Pharma, a member of Oslo Cancer Cluster, gave students a lecture on the chemistry behind cancer treatments.

Chemistry with mutual benefits

Arctic Pharma, a member of Oslo Cancer Cluster, gave students a lecture on the chemistry behind cancer treatments.

Students were taught about the chemistry behind developing cancer treatments in the Oslo Cancer Cluster Incubator.

In February, forty chemistry students were given a memorable specialisation day on the subject of the chemistry behind developing cancer treatments. The company Arctic Pharma in Oslo Cancer Cluster Incubator invited them to the lab and gave a long and detailed lecture on the chemistry behind the medication they are developing to treat cancer.

Karl J. Bonney, who is a researcher in the company, started the day with an interactive lecture in English about the chemistry of the substance Arctic Pharma hopes will be effective against cancer.

Bonney emphasised to the students that the company is in the early stages of the development, and that it will take approximately three to four years before they are potentially able to start clinical trials on humans to see whether the substance is effective.

The pupils who are studying chemistry as their specialisation in the last year of upper secondary school were obviously fascinated by what they heard. They asked many important questions both to the lecturer, Bonney, and the chemistry teacher, Karsten, who participated to explain the most difficult terms in Norwegian.

 

Sugar-hungry cancer cells

Arctic Pharma is exploiting a well-known biological fact regarding cancer cells, namely that they like sugar, which means they have a sweet tooth. This is called the Warburg effect, and, so far, nobody has used it in the treatment of cancer. Since this is such a characteristic aspect of cancer cells, it would make sense to think that this could be a viable starting point for treatment.

Arctic Pharma is one of the smaller companies in Oslo Cancer Cluster Incubator and is co-located with Ullern Upper Secondary School. Bonney has been permitted to use the school’s chemistry lab to test the chemical substance being developed to attack the Warburg effect.

The chemistry day at the company was organised to return the favour and to inspire the young chemistry students to keep studying chemistry at a university or university college.

 

 

Sign up to OCC newsletter

Transporting patients

Ullern student Jørgen on his work placement in the hospital.

Student Jørgen Amdim got to experience life as an orderly on his one-week placement at the Norwegian Radium Hospital.

 

Transporting patients in Norway’s biggest cancer hospital is strenuous both physically and psychologically. “But it’s really good,” said Jørgen Amdim, who is studying the program Healthcare, childhood and youth development at Ullern Upper Secondary School. His one-week placement was at the Transport Section at the Norwegian Radium Hospital. The work experience certainly gave him a taste for more.

Jørgen has previously worked in a nursing home, but he found the work a little tedious. He enjoyed being an orderly though and asked the school if there were any available placements.

An orderly is an attendant in a hospital who is responsible for, among other things, transporting patients, medical equipment and other essential materials. Jørgen spent one week as an orderly at the Radium Hospital and he loved it. He enjoyed it so much that he wants to work there again during the summer of 2019.

Knut Arve Kristiansen, the Head of the Transport Section, has worked at the Radium Hospital for 30 years and praised Jørgen:

“He was a perfect addition to our team, and we are very happy with him.”

 

80 km per week

Jørgen enjoys manual labour, which is great if you want to become an orderly. Wheeling around heavy medical equipment or patients in beds and wheel chairs is hard work. Knut Arve explained:

”As orderlies, we’re constantly on the go, and we could end up walking around 80 kilometres on hard floors during a week of work.

“It can be strenuous for the body, so we have to regularly do strength exercises to keep fit,” Knut Arve continued.

Knut Arve only had positive things to say about Jørgen and he hopes that Jørgen will want to return to the Transport Section for a summer job as an orderly.

“Jørgen is a social person and very well liked. This is important for patients when they are transported between examinations and the rooms they are staying in,” said Knut Arve.

Jørgen praises the work environment and especially the warm welcome he received from the other staff.

Jørgen has constantly been accompanied by a colleague from the section during his stay, because he is not allowed to do much on his own when on a placement. If he returns for a summer job, things will be different. Then he will have to work more independently and take responsibility if an emergency should occur while he is transporting a patient.

The orderlies are also responsible for transporting food and medication. To newcomers, the Radium Hospital can appear to be a huge labyrinth, especially outside the wards. The hospital is also currently being renovated, because a new hospital is being built. A sense of direction is therefore essential for anyone finding their way through the building.

 

A future in health

Jørgen does not necessarily want to become an orderly, but sees himself working in healthcare:

“I would really like to work in an emergency room – receiving ill and injured people at the hospital when they arrive in an ambulance. But I think working as an orderly is very exciting too, so I don’t want to exclude it as an option.”

Knut Arve says that a trade certificate is required to work as an orderly and that they currently offer placements for several apprentices in the section. Students need to study Healthcare, childhood and youth development during upper secondary school and then finish a two-year apprenticeship to obtain their trade certificate as an orderly.

”Workdays here are very varied and you meet many different people. It is really fun to talk to people and no two days are the same. I have really enjoyed it.” said Jørgen.

 

Attracting and developing the life science talents of the future is an essential goal for Oslo Cancer Cluster. One way to do that is to take students outside the traditional classroom setting and invite them to work placements and educational lectures. These collaborations between industry and academia give the students a unique insight into the specialist skills needed to become tomorrow’s researchers and entrepreneurs.

  • Find out more about Oslo Cancer Cluster’s school collaboration with Ullern Upper Secondary School.

 

Sign up to OCC newsletter