Gert W. Munthe, Chairman of the Board, and Øystein Rekdal, PhD, CEO of Lytix Biopharma. Photo: Håvar Haug

Lytix Biopharma signs licensing agreement

Our member Lytix Biopharma has entered into a milestone agreement with Verrica Pharmaceuticals to license the company’s lead drug candidate against skin cancer.

The Norwegian start-up Lytix Biopharma from Tromsø has reached a new milestone. The company has licensed its lead drug candidate LTX-315 against skin cancer to the dermatology therapeutics company Verrica Pharmaceuticals. Verrica Pharmaceuticals will develop and commercialize LTX-315 for dermatologic oncology indications.

The drug is a first-in-class oncolytic peptide-based immunotherapy. Immunotherapy is a type of cancer treatment that mobilises the patient’s own immune system to fight cancer. Peptides are short chains of between two and fifty amino acids that can have many different sources or functions. Peptides hold great potential for both cancer therapy and diagnostics, through the development of anticancer peptides, use of peptides for drug delivery, and cancer targeting.

Clinical studies have shown that the drug LTX-315 from Lytix Biopharma has the ability to kill human cancer cells and induce a specific anti-cancer immune response when injected locally into tumours.

“We are pleased to enter into this collaboration with Verrica, which has significant expertise within the field of dermatology” said Øystein Rekdal, CEO of Lytix Biopharma. “Our lead drug candidate, LTX-315, has shown very promising efficacy and safety signals in cancer patients during Phase I/II studies and we are excited that this partnership with Verrica will expand the applications for LTX-315”

The agreement entitles Lytix Biopharma to up-front payment, contingent regulatory milestones based on achievement of specified development goals, and sales milestones, with aggregate payments of more than $110M, as well as tiered royalty payments in the double-digit teens once Verrica successfully commercializes LTX-315 in dermatologic oncology indications.

Lytix Biopharma and Oslo Cancer Cluster

Lytix Biopharma has been a part of the innovation environment in Oslo Cancer Cluster Innovation Park since the building opened in 2015, utilising both offices and laboratory for research and development.

Oslo Cancer Cluster Incubator has offered the company its services in both private and shared laboratory spaces. In addition, Lytix Biopharma has been active in the animal laboratories at The Norwegian Radium Hospital (a part of Oslo University Hospital), which is located right next to the Incubator.

The researchers in Lytix Biopharma have gained their PhDs in the Incubator, in collaboration with its innovation environment. One of the company’s former researchers is now the laboratory manager in the Incubator.

“This shows how the innovation environments enrich one another in a positive sense, by sharing access to different services and thanks to the power of our geographic location,” said Bjørn Klem, general manager of Oslo Cancer Cluster Incubator.

Lytix Biopharma recently moved out of the Incubator after finishing their main project earlier this year and remains a member of Oslo Cancer Cluster.

Oslo Cancer Cluster Incubator is financed by SIVA, the Norwegian national infrastructure for innovation, consisting of incubators, business gardens, catapult centres, innovation enterprises, innovation centres and industrial real estate.

Sign up for our monthly newsletter to see the latest news and events

Hakan Köksal has researched new designs of cells to improve cancer treatment. He defended his PhD via a digital platform from Oslo Cancer Cluster Incubator, due to corona restrictions.

Designing cells to fight cancer

How can new designs of T cells improve cell therapy for cancer patients?

Hakan Köksal defended his PhD digitally from Oslo Cancer Cluster Incubator.

Hakan Köksal defended his PhD digitally from Oslo Cancer Cluster Incubator.

This was the question Hakan Köksal attempted to answer in his PhD thesis, which he defended from the Oslo Cancer Cluster Incubator via a digital platform on Thursday 28 May 2020.

Köksal first arrived at Oslo Cancer Cluster Incubator to begin his PhD in October 2016 for the Department of Cellular Therapy, belonging to Oslo University Hospital. Three and a half years later, he is finally finished and has made a discovery that could potentially help cancer patients that are not responding to standard cell therapies.

“Essentially, what we are doing is called adoptive T cell therapy. We try to manufacture designs of chimeric antigen receptors to redirect T cells against cancer cells,” Köksal explained.

Cell therapy is an exciting, new area in cancer research and is a type of immunotherapy. This means that the patient’s immune system is changed in order to recognise and destroy the cancer cells in the body. CAR T cell therapy (CAR is short for chimeric antigen receptor) specifically involves collecting cells from the patient’s blood and changing them in the laboratory.

“We collect T cells, or lymphocytes, from the patients and engineer them so they can detect cancerous cells. Afterwards, they can be reinfused in the patient to destroy the cancer cells.” Hakan Köksal

Novel designs and new approaches

Current CAR T cell therapies have proved successful against several haematological cancers (blood cancers). However, the long-term clinical effects are quite limited and several barriers remain to cure all cancers with cell therapy. One problem Köksal looked at is when lymphoma patients treated with CD19 CAR T therapy relapse with CD19 negative lymphoma.

“We come up with alternative designs and approaches that may have an improved therapeutic effect, a lowered toxicity and improved survival in the body,” Köksal said. “The study we conducted can potentially be used as a standalone therapy or it can be complementary to reduce relapse.”

Standard CAR T therapies use antibody fragments as recognition units to detect cancer cells. In his thesis, Köksal has used a T cell receptor part, which is a different recognition domain, to increase the number of the targetable markers on cancer cells.

“Usually CAR T therapies can only detect proteins on the surface of the cell, but this new design can technically also recognise proteins inside the cell.” Hakan Köksal

Köksal stresses that we cannot know the clinical efficacy of the study before testing it in humans. The furthest they have tested is in mice, which is still a completely different organism from humans.

Read more about the research in this article: “The first Norwegian CAR”

Presenting during corona

Köksal finished his thesis in August 2019 but has not had the opportunity to defend it until now. Due to the ongoing corona situation, he could not present the trial lecture and defence in a filled auditorium but had to make do with an empty room and a laptop.

“It’s completely different. Normally, I would be standing on a stage and looking the audience in the eyes to see if I do well or bad. Now, I couldn’t see the audience, because they couldn’t share their video screens. I could only see my opponents,” Köksal explained.

In March, the corona pandemic affected the researchers in the Incubator too, because there were difficulties getting the necessary deliveries as companies worldwide had limited personnel. The laboratory had to restrict the number of people coming in and meeting rooms were temporarily converted to offices to avoid shared office space. The Incubator never closed completely and stayed open with extra sanitation procedures in place, so that the important research could go on.

Dr. Pierre Dillard and Hakan Köksal are part of the team behind the new study on CD37CAR T-cell therapy for treatment of B-cell lymphoma.

Dr. Pierre Dillard and Hakan Köksal are part of the team behind the new study on CD37CAR T-cell therapy for treatment of B-cell lymphoma.

A collaborative effort

Köksal emphasised that the research behind his PhD thesis has been a team effort. He is thankful to his supervisors at Oslo University Hospital, Else Marit Inderberg, Sebastien Wälchli and June Helene Myklebust, for helping him and giving important guidance during his projects.

It has also meant a lot for him to be a part of the Oslo Cancer Cluster Incubator, Innovation Park and the Oslo Cancer Cluster ecosystem.

“It is good to be in such a translational building. You have one part that has an arm in the clinic and at the same time you have pre-clinical research going on side-by-side with the private companies. You have different niches and you can meet a lot of people with different backgrounds and interests. It gives you new perspectives,” Köksal said.

Köksal thinks the Incubator is a calm, relaxing work environment and not super busy like many other research buildings, where there is a lot of competition going on. In the Incubator, the researchers are united by the common goal to accelerate cancer treatments.

“I feel happy when I see an announcement that a company has reached a new milestone, because it means someone is making an impact and a difference out there.” Hakan Köksal

Köksal will now begin a postdoctoral position and continue his ongoing research projects. He aims to work on the development of cell therapies and hopes to make new breakthroughs on the treatment of solid cancers in the future.

Sign up to our monthly newsletter

 

Gustav Vik (to the left) from Kjellervolla school and Martin Dimov from Mailand school are collaborating in the laboratory to isolate T cells. Photo: Bente Prestegård.

Research talents learned about immunotherapy

Gustav Vik from Killevold school and Martin Dimov from Mailand school are enjoying the gatherings arranged by Talentsenteret for realfag: “This is very interesting because we are learning things that are not part of the curriculum and we like to learn about current topics.”

This article was first published in Norwegian on our School Collaboration website.

A group of talented science students from Oslo and Akershus spent two days learning about immunotherapy from former cancer researchers, who are now teachers at Ullern Upper Secondary School and researchers at Thermo Fisher Scientific.

Collaboration partners: Oslo Cancer Cluster, Thermo Fisher Scientific Norway, Ullern Upper Secondary School, Norsk teknisk museum (The Norwegian Museum of Science and Technology) and Oslo Vitensenters Talentsenter i realfag (Talent centre for the natural sciences)

In February, 25 students from 19 different schools in Oslo, which are a part of “Talentsenteret for realfag” (Talent Centre for the Natural Sciences), arrived together to Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School.

The students were there to participate in a specially tailored two-day programme about medical research and the use of immunotherapy to treat cancer.

The days were spent partly in a classroom to learn about the theory of the immune system and partly in a laboratory to learn how to isolate a type of cells in the immune system called T cells. The method the students learned about is used in modern cell therapies against cancer, which are called CAR T therapies.

Gustav Vik from Kjellervolla School and Martin Dimov from Mailand School are enjoying the gatherings arranged by Talentsenteret for realfag: “This is very interesting because we are learning things that are not part of the ordinary school syllabus and we like to learn about current topics.”

Kaja Flote from Hellerasten school is looking in the microscope to find T cells. She thinks it is exciting to learn more about the depth of the immune system and how it can be changed to fight cancer. Photo: Bente Prestegård.

Kaja Flote from Hellerasten School is looking in the microscope to find T cells. She thinks it is exciting to learn more about the complexity of the immune system and how it can be changed to combat cancer. Photo: Bente Prestegård.

The next day, the students visited the production facilities of Thermo Fisher Scientific Norway, located in Lillestrøm. This is where the company makes Dynabeads (also known as “Ugelstadkulene” in Norwegian) to be used in five billion diagnostic tests every year and in CAR T therapies against cancer.

The Norwegian TV channel TV2 has produced this news segment about Emily Whitehead (link in Norwegian), the first child in the world who received CAR T therapy to treat her cancer, which was deemed incurable. The segment was recorded in 2019, when Emily and her family visited the Norwegian employees at Thermo Fisher Scientific in Oslo. Emily is today 13 years old and has been cancer-free for over eight years.

You can read more about the students’ experience at Thermo Fisher Scientific in this article from 2017, when another group of students from Ullern Upper Secondary School visited the same production facilities.

The researcher Morten Fure from Thermo Fisher tells the students about Dynabeads, also known as “Ugelstadkulene”, CAR T therapy, immunotherapy, and cancer. He has prepared T cell solutions that the students will look at in the microscope. Photo: Bente Prestegård.

The researcher Morten Luhr from Thermo Fisher Scientific tells the students about Dynabeads (also known as “Ugelstadkulene”), CAR T therapy, immunotherapy, and cancer. He has prepared T cell solutions that the students will look at in the microscope. Photo: Bente Prestegård.

The background to the collaboration

“Talentsenteret i realfag” is a customised educational option for students who are especially strong academically. It is for those students who find that the standard school curriculum does not challenge them enough. Just like the school adapts the teaching for students who need extra help in subjects, they adapt the teaching for students who already know a lot and want to learn even more. This is a group of students with a high degree of motivation and a hunger for knowledge that is extraordinary.

The centre employs experts in different subjects to give the students the academic challenges they need. That is why this two-day programme in medicine and immunotherapy was held in February.

The programme was developed by employees from Thermo Fisher Scientific and two teachers from Ullern Upper Secondary School. Fet and Flydal Jenstad both have backgrounds as cancer researchers at the Institute for Cancer Research and the Institute of Cancer Genetics and Informatics respectively. Fet and Flydal Jenstad share the responsibility for the new researcher programme at Ullern Upper Secondary School. Read more about the researcher programme here (link in Norwegian).

Oslo Cancer Cluster and Ullern Upper Secondary School have a school collaboration project since 2009. The goal is to contribute to educating the researchers and entrepreneurs of the future.

Thermo Fisher Scientific is a global biotech company with strong Norwegian roots through the acquisition of the Norwegian biotech Dynal. Thermo Fisher Scientific is one of the members of Oslo Cancer Cluster and actively participates in the school collaboration between Oslo Cancer Cluster and Ullern Upper Secondary School.

Read articles about the other school collaborations Thermo Fisher Scientific have participated in:

 

Click here to sign up for Oslo Cancer Cluster Newsletter

Photo: Christopher Olssøn/Oslo Cancer Cluster

News from our members

There have been several exciting developments from our members over the last week. Here are three condensed news from the Norwegian biopharma sphere that we wish to highlight.

Promising combination treatment

Our member Targovax, a Norwegian immuno-oncology company, has announced some encouraging data from one of their clinical studies.

The study is directed towards patients with mesothelioma, a type of cancer that develops in the thin layer of tissue that covers many of the internal organs, for example the lining of the lungs or chest wall.

The patients are given a combination treatment consisting of Targovax’s own oncolytic virus called “ONCOS-102” and the standard of care: chemotherapy.

The preliminary data show a numerical advantage in progression-free survival for the patients that have received ONCOS-102. There has also been a robust immune activation in the experimental group. It has also been shown that the combination treatment is well tolerated by the patients.

Targovax are now in ongoing discussions with a pharmaceutical company about a prospective partnership in order to launch a checkpoint inhibitor combination study.

View the entire press release from Targovax

US patent for Norwegian cancer technology

Our member PCI Biotech, a Norwegian biopharmaceutical company, has secured a US patent for one of their cancer treatment technologies.

The treatment is called “fimaVACC” and is based on a type of light technology invented here in Norway at the Norwegian Radium Hospital.

The technology helps to transport cancer medicine more effectively to the targeted cancer cells. In this case, the technology enhances the effect of other cancer vaccines.

The US patent is for the use of fimaVACC together with cytokines, a small protein that is involved in cell signalling that regulates the immune responses.

The combination treatment has shown to be effective when enhancing the immune responses in cancer patients to fight off cancer.

Per Walday, CEO of PCI Biotech, said: “There are many vaccines under development utilising cytokines to elicit immune responses. The US patent granted today is important for PCI Biotech’s development strategy, as it supplements our ability to generate an internal future vaccine pipeline, in addition to bringing value for the fimaVACC technology in partnering efforts.”

View the entire press release from PCI Biotech

New results from clinical study

Our member BerGenBio, a Norwegian biopharmaceutical company, has given an update on one of their phase II clinical trials.

The phase II trial aims to determine the clinical efficacy of one of the drugs BerGenBio has developed, namely “bemcentinib”.

Bemcentinib is an AXL inhibitor, a novel type of cancer therapeutic agent.

BerGenBio can now show that the first stage clinical efficacy endpoint has been met.

The clinical trial is evaluating a combination treatment, consisting of bemcentinib and the immunotherapy drug Keytruda.

The patients who have been treated in this trial all have non-small cell lung cancer (NSCLC) and have previously failed checkpoint inhibitor therapy.

Richard Godfrey, Chief Executive Officer of BerGenBio, said: “Reversing resistance to immune checkpoint inhibitors in patients who have relapsed on immunotherapy is a highly desirable alternative to the second-line chemotherapy standard-of-care. We are very excited with these early results in this challenging setting and look forward to expanding the study to confirm these findings and reporting comprehensive translational insight.”

View the entire press release from BerGenBio

 

Sign up to our monthly newsletter