Photo: Christopher Olssøn/Oslo Cancer Cluster

News from our members

There have been several exciting developments from our members over the last week. Here are three condensed news from the Norwegian biopharma sphere that we wish to highlight.

Promising combination treatment

Our member Targovax, a Norwegian immuno-oncology company, has announced some encouraging data from one of their clinical studies.

The study is directed towards patients with mesothelioma, a type of cancer that develops in the thin layer of tissue that covers many of the internal organs, for example the lining of the lungs or chest wall.

The patients are given a combination treatment consisting of Targovax’s own oncolytic virus called “ONCOS-102” and the standard of care: chemotherapy.

The preliminary data show a numerical advantage in progression-free survival for the patients that have received ONCOS-102. There has also been a robust immune activation in the experimental group. It has also been shown that the combination treatment is well tolerated by the patients.

Targovax are now in ongoing discussions with a pharmaceutical company about a prospective partnership in order to launch a checkpoint inhibitor combination study.

View the entire press release from Targovax

US patent for Norwegian cancer technology

Our member PCI Biotech, a Norwegian biopharmaceutical company, has secured a US patent for one of their cancer treatment technologies.

The treatment is called “fimaVACC” and is based on a type of light technology invented here in Norway at the Norwegian Radium Hospital.

The technology helps to transport cancer medicine more effectively to the targeted cancer cells. In this case, the technology enhances the effect of other cancer vaccines.

The US patent is for the use of fimaVACC together with cytokines, a small protein that is involved in cell signalling that regulates the immune responses.

The combination treatment has shown to be effective when enhancing the immune responses in cancer patients to fight off cancer.

Per Walday, CEO of PCI Biotech, said: “There are many vaccines under development utilising cytokines to elicit immune responses. The US patent granted today is important for PCI Biotech’s development strategy, as it supplements our ability to generate an internal future vaccine pipeline, in addition to bringing value for the fimaVACC technology in partnering efforts.”

View the entire press release from PCI Biotech

New results from clinical study

Our member BerGenBio, a Norwegian biopharmaceutical company, has given an update on one of their phase II clinical trials.

The phase II trial aims to determine the clinical efficacy of one of the drugs BerGenBio has developed, namely “bemcentinib”.

Bemcentinib is an AXL inhibitor, a novel type of cancer therapeutic agent.

BerGenBio can now show that the first stage clinical efficacy endpoint has been met.

The clinical trial is evaluating a combination treatment, consisting of bemcentinib and the immunotherapy drug Keytruda.

The patients who have been treated in this trial all have non-small cell lung cancer (NSCLC) and have previously failed checkpoint inhibitor therapy.

Richard Godfrey, Chief Executive Officer of BerGenBio, said: “Reversing resistance to immune checkpoint inhibitors in patients who have relapsed on immunotherapy is a highly desirable alternative to the second-line chemotherapy standard-of-care. We are very excited with these early results in this challenging setting and look forward to expanding the study to confirm these findings and reporting comprehensive translational insight.”

View the entire press release from BerGenBio

 

Sign up to our monthly newsletter

Researcher Anette Weyergang shows the PCI technology to Erna Solberg. Photo: Oslo Cancer Cluster Innovation Park

PDT/PCI application grant

Erna Solberg visits PCI Biotech

Radforsk will distribute funding to photodynamic therapy and photochemical internalization (PDT/PCI) related research. Application deadline is March 1st 2020.

In 2020 a total of MNOK 1,25 will be distributed. The maximum amount given to a project is NOK 300 000. Employees at the Oslo University Hospital are welcome to apply.

Please see more details here: Guidelines for resources to PDT/PCI related research.

Applications, containing a description of the project, can be sent to:
Bente Prestegård: bp@radforsk.no

If you have received a grant for PDT/PCI projects previously, you must provide a project report with your new application.

Here you may read more on the projects funded last year.

Click here to sign up for Oslo Cancer Cluster Newsletter

Photo: Anders Bayer, Oslo University Hospital

Olweus wins prestigious award

Olweus sitting in front of her laptop and smiling.

Professor Johanna Olweus has been awarded the ERC Consolidator Grant for her cancer research project on immunotherapy.

The Norwegian cancer researcher Johanna Olweus was awarded a prestigious grant from the European Research Council (ERC) last week, as the only Norwegian scientist within Life Sciences. Olweus is Head of Department of Cancer Immunology at the Institute for Cancer Research and Professor at the University of Oslo.

Olweus will receive 2 million euros over a 5-year-period for her research project in immunotherapy called “Outsourcing cancer immunity to healthy donors”.

“Immunotherapy has revolutionized the treatment of metastatic cancer the last few years,” said Olweus. “Still, there is no curative treatment for many patients.”

 

Donor technology to save lives

Olweus worked in transplantation immunology when she first thought of the idea behind her innovative research. She saw that organ rejection triggers powerful immune responses, which could be used in cancer treatments too.

“The mechanism behind this rejection is connected to differences in the immune systems between the donor and the recipient,” said Olweus. “We have shown that we can utilise this mechanism to reject cancer cells in the laboratory.”

The treatment she has developed evades the patient’s tolerance to his or her cancer cells by utilising the immune response of a donor.

“We are exploiting the differences in the immune systems to mimic the rejection response you see in organ rejection and we target it to a specific cell type,” Olweus explained.

Her research group takes T cells from a healthy donor. Then, they use their patent-protected technology to select T cells with anti-tumour reactivity from the repertoire of the donor’s T cells. They next identify the T cell receptors (TCRs) from the selected T cells that can efficiently recognise specific peptides (fragments of proteins) expressed by the cancer cell. Upon reinfusion into the patient, such TCRs can work like heat-seeking missiles. They will make the T cells search for the cancer cells and destroy them.

(Read more about T cell immunogene therapy further down in this article)

 

What’s next?

Olweus has already demonstrated evidence in pre-clinical experiments on human cells from cancer patients in the laboratory and in mice that the treatment can work. Now, she is in advanced planning stages for clinical trials, in which the treatment will be tested on cancer patients.

“This award means I have long-term funding to perform the project and can secure talented personnel to do the science,” Olweus said.

Olweus is also in the process of exploring the commercialization potential of the T cell receptors that her research group has generated. The group has secured a prestigious commercialisation grant from Novo Holdings to possibly start a company.

“We have developed TCRs that can work in multiple haematological cancers. First, we need to show clinical efficacy. In the long term, we hope to cure some of the patients for whom there is currently no cure,” said Olweus. “To get the science implemented in clinical trials is really crucial.”

Olweus stresses the need for manufacturing facilities in Norway for cell- and gene therapies. To achieve this, she thinks there needs to be collaboration between regulatory authorities, clinicians and researchers.

“It is important that the Nordic medicinal agencies seize the opportunity to establish these therapies in the front line to make them available to patients in the Nordic countries,” said Olweus. “The Nordic countries could have a great advantage if the regulatory authorities are working together with the clinicians, academic scientists and also with industrial partners in early testing of new cell- and gene therapies.”

The Department of Cancer Immunology and the Department of Cellular Therapy have advanced plans for establishment of infrastructure for production of cells for gene therapy at Oslo University Hospital Radiumhospitalet in Oslo.

 

What is immunogene therapy based on T cells?

Olweus’ research is in a special area of cancer treatments called immunotherapy. This involves harnessing the patient’s immune system to create a response that will destroy cancer cells.

One category of immunotherapy is immunogene therapy. The first example of immunogene therapy that was approved by the FDA in 2017 involves the use of so-called CARs (chimeric antigen receptors), targeting CD19.

The process starts with the harvesting of the patient’s white blood cells from their blood, containing T cells. Then, the T cells are genetically modified in the lab to equip the cells with immune receptors that can target a molecule specific for B cells. Upon reinfusion into the patient’s blood, these T cells can then find the cancer cells and kill them, based on recognition of the B cell molecule called CD19.

This type of therapy has been immensely successful, curing up to 40-50% of patients that were previously incurable. The treatment has worked for patients with B cell cancers, such as B cell acute lymphocytic leukemia (ALL) and B cell lymphoma.

Image describing CAR T cell therapy.

The complete process of CAR T cell therapy to treat cancer. Illustration: National Cancer Institute (www.cancer.gov)

Not yet a cure for all patients

In spite of the great success of immunotherapies, such as checkpoint inhibition and CAR therapies, there is still no curative treatment option for the majority of patients with metastatic cancer (cancer that has spread). Checkpoint inhibition and various vaccination strategies rely on the patient’s own immune system, which often is insufficient in the end. In CAR therapies, the patient’s T cells are equipped with a reactivity that they did not have before, which can mediate cures. However, CAR 19 therapy does not cure 50-60% of patients with B cell cancers. Moreover, in spite of year-long efforts, no CAR therapy has yet been approved for other cancers than B cell cancers.

“The main reason is that there is a lack of good targets, which are highly expressed on the cancer cells and can be safely targeted,” said Olweus. “In the case of CARs targeting CD19, the normal and malignant B cells are killed alike, as CD19 is a normal, cell-type specific protein. This is, however, tolerated by the patient as we can live without normal B cells for prolonged periods. So you need to be sure that you can live without the normal counterpart of the cancer cell.”

CARs can only recognize targets in the cell membrane of the cancer cell. In contrast, a T cell receptor (TCR) is an alternative immune receptor that can recognise targets independently of where in the cell they are. Since more than 90% of proteins are inside the cell, gene therapy utilizing therapeutic TCRs can vastly increase the number of potential targets.

“The challenge for identification of therapeutic TCRs that target cell-type specific proteins is that the T cells in our own body have been trained to not recognise them,” said Olweus. “If not, we would all have autoimmunity. The technology we have developed can solve this challenge by utilization of donor T cells, that have not been trained not to recognize cells from another individual. This is where the mechanism of transplant rejection comes to use.”

There are two main challenges researchers are faced with when improving T cell therapy. The first is to identify new targets that are abundant in the cancer cells and can be safely targeted. The second is to identify immune receptors that recognize the targets with high efficacy and precision. Olweus’ research aims to answer both of these challenges.

 

Click here to sign up for Oslo Cancer Cluster Newsletter

Photo: DNB Nordic Healthcare Conference

DNB Nordic Healthcare Conference 2019

DNB Nordic Health Care Conference

DNB are promoting start-ups in the Nordic healthcare sector!

This week, DNB is arranging the annual conference The DNB Nordic Healthcare Conference 2019 in Oslo. It is an opportunity for Norwegian health start-ups to connect with the investor environment and it is an important platform to promote the Nordic healthcare sector.

Start-up prize

One of the highlights of the event is the DNB Healthcare Prize, which is awarded every year to an early-stage healthcare company within pharmaceuticals, biotech, diagnostics, medtech and eHealth.

The companies are evaluated based on their innovation capacity, business potential and an ability to execute their strategy. They also have the opportunity to present their business cases in the semi-finals.

This year, our general manager Ketil Widerberg will be the moderator for the session with the six finalists for the fifth DNB Healthcare Prize. DNB’s Trine Loe, Head of Future and Tech Industries, will announce the winner of the prize.

Our job in Oslo Cancer Cluster is to accelerate the development of cancer treatments. By connecting investors and companies in many great projects each year, the DNB Nordic Healthcare Conference contributes to accelerating this development too.” Ketil Widerberg, General Manager, Oslo Cancer Cluster

Podcast studio

For the first time ever, there will be a glass studio recording live interviews with CEOs, analysts and opinion makers about the healthcare sector in the Nordics during the event.

This is a collaboration between the DNB podcast “Utbytte” and the Radforsk podcast “Radium”.

They will be interviewing relevant participants during the conference and receive technical assistance from Ullern Upper Secondary students.

Company presentations

We are also delighted that several of our members are attending this event.

The following of our members will be presenting in Auditorium 2: Nordic Nanovector, Photocure, Ultimovacs, Targovax and PCI Biotech.

Zelluna Immunotherapy and Vaccibody are part of a separate session in Meeting room C2 on Potential IPO candidates.

Don’t miss the presentations on their exciting cancer research!

Please visit the official DNB website to view the full agenda.

Subscribe to Oslo Cancer Cluster Monthly Newsletter

Photo: Thomas Brun / NTB ScanPix

PCI Biotech works with Astra Zeneca

Bjellesermoni Oslo Børs PCI Biotech

PCI Biotech reveals they have been collaborating with Astra Zeneca since 2015.

Our member PCI Biotech grabbed the opportunity during their third quarter report this week to announce who their mystery collaboration partner since 2015 has been. The “top-ten pharma company in the world”, who has been helping them, is Astra Zeneca.

PCI Biotech is a company that is based on a technology called photochemical internalisation, which was invented by Professor Kristian Berg from the Norwegian Radium Hospital. The technology is a kind of drug and gene delivery method. It aims to improve the release of big molecules and chemotherapy drugs to the targeted cancer cells. The technology can also potentially be used for a wide variety of diseases and treatments.

The company currently develops three different programs:

  1. FimaCHEM: enhancing the effect of chemotherapy drugs for localised treatment of cancer
  2. FimaVACC: delivering cancer vaccines effectively to the cancer cell and kick-starting a immune response
  3. fimaNAc: delivering nucleid acid therapeutics

You can read more about the revolutionary light technology in the following article:

Astra Zeneca has said that the results from their tests of fimaNAc look very promising in the oncology area. Now, they wish to see if the same technology can work in other disease areas. The pre-clinical collaboration agreement between PCI Biotech and Astra Zeneca lasts until the end of 2019 and the following 6 months will be used to evaluate the potential for further collaboration.

Per Walday, CEO of PCI Biotech, had the following to say about the collaboration:

“Ensuring sufficient intracellular delivery of nucleic acid therapeutics is a major hurdle to realise the vast therapeutic potential of this drug class. We believe that the fimaNAc technology can play an important part in solving this delivery challenge.  PCI Biotech’s current collaborations and their progress suggest that external partners share this view.”

Listen to Per Walday and Ronny Skuggedal talk more about PCI Biotech, the “light technology”, their third quarter report and future milestones in the podcast Radium episode 103.

Sign up to Oslo Cancer Cluster newsletter!

Reports from the third quarter from our members have been published. Photo: Unsplash

What’s new in Q3?

Two persons working in front a two laptops.

Positive results from clinical trials, revenue growth and new clinical collaborations … Read some of the third quarter developments from our members below.

BerGenBio logo

BerGenBio

  • BerGenBio showed results from their clinical trial for patients with non-small cell lung cancer, who have previously been treated with chemotherapy. The results showed they met primary and secondary endpoints.
  • The company presented interim safety data from a Phase Ib/II trial. They are testing their drug bemcentinib in combination with pembrolizumab on melanoma patients. The data shows the combination is well tolerated by patients.
  • The U.S. Food and Drug Administration (FDA) has granted bemcentinib Fast Track Designation. This means they will do an expedited review of the investigational drug. The designation is for the treatment of elderly patients with acute myeloid leukemia (AML), who have relapsed.

Read more in the press release from BerGenBio

Nordic Nanovector logo

Nordic Nanovector

  • Nordic Nanovector raised approximately NOK 243 million in private placement of new shares. This will provide further funds to continue the clinical development of their drug Betalutin, manufacturing and other commercial activities.
  • The company presented new results from a clinical trial, testing their drug Betalutin on patients with non-Hodgkins lymphoma (a type of blood cancer). The median duration of response was 13.6 months for all responders and 32.0 months for complete responders.
  • The company reported 3 out of 3 patient responses in the first patient cohort in one of their clinical trials. The patients were given Betalutin in combination with rituximab to treat 3rd-line relapsed or refractory follicular lymphoma (also a type of blood cancer).

Read more in the press release from Nordic Nanovector

Photocure logo

Photocure

  • Photocure reported a revenue growth of 42% in local currency for the US market.
  • The revenues in the Nordics declined 7% to NOK 9.9 million (NOK 10.6 million) in the third quarter.
  • The company entered into a licensing agreement with Asieris Meditech Co. to commercialize the product Cevira to the global market. Cevira is a non-invasive photodynamic therapy for HPV-related (cervical) diseases.

Read more in the press release from Photocure

 

Targovax logo

Targovax

  • Targovax presented new data from the first part of the clinical trial of their oncolytic virus. The trial has shown clinical responses in three out of nine patients. This treatment targets patients with refractory advanced melanoma (skin cancer).
  • The company announced an expansion of the clinical trial of the oncolytic virus ONCOS-102 in combination with the checkpoint inhibitor Imfinzi. This trial is open for patients with advanced peritoneal malignancies (a rare cancer that develops in the tissue that lines the abdomen).
  • The company publicised that Oslo University Hospital will become a site for the clinical trial of their oncolytic virus ONCOS-102.

Read more in the press release from Targovax

 

Ultimovacs logo

Ultimovacs

  • Ultimovacs presented long-term results from the clinical study of their therapeutic cancer vaccine UV1. The patients have non-small cell lung cancer and the trial has shown a 4-year overall survival rate of 39% (7 of 18 patients are still alive).
  • New data from their prostate cancer trial showed a 5-year overall survival rate of 50% (11 of 22 patients are still alive).
  • A phase II clinical trial for patients with malignant melanoma (skin cancer) is projected to start in the first quarter of 2020.

Read more in the press release from Ultimovacs

 

More third quarter reports from our other members are or will be made available on their respective websites.

 

Jónas Einarsson, CEO of Radforsk, and Elisabeth Kirkeng Andersen, Communications Manager at Radforsk, invite guests on the podcast Radium to discuss recent developments in the Norwegian oncology field.

100 episodes of cancer research & development

Jonas Einarsson and Elisabeth Kirkeng Andersen, from RADFORSK, are the two people behind the podcast Radium.

From a relatively modest podcast to packed live shows at Arendalsuka, Radium has in three years grown into a leading cancer podcast in Norway.

Radium is a weekly podcast about Norwegian cutting-edge cancer research and development, produced by the evergreen investment fund Radforsk. Radforsk has 15 companies in its portfolio, of which five are on the stock market and 10 are also members of Oslo Cancer Cluster. Elisabeth Kirkeng Andersen, Communications Manager, and Jónas Einarsson, CEO of Radforsk, bring guests on the show to discuss recent development in the oncology field and news from the portfolio companies.

“Three years ago, Elisabeth came to me and said ‘Now, we are going to do something new – we will make a podcast’. I replied ‘That’s great! But what is a podcast?’” Einarsson said.

Andersen then took the first steps and employed students from the media program at Ullern Upper Secondary School to help with sound production.

 

Interested investors

Andersen and Einarsson quickly noticed there is great interest in the podcast, especially from investors and shareholders. They want to stay updated about Norwegian cancer research, a relatively new but growing sector. They often send in questions, which Andersen and Einarsson ask the guests in the studio.

“We try to simplify things. It is easier to hear it explained by someone from a company, than to read a difficult press release,” Andersen said.

“I think the best episodes are when we get a good dialogue with the CEOs of the companies, especially when things get a little heated. I try to lure them out on the thin ice to make them tell us more,” Einarsson said.

The popular podcast format has exploded in recent years, giving people access to accessible conversations that they can listen to whenever they want.

“There is no strict direction. We say that we are just going to have a conversation and then we talk for an hour or more,“ Einarsson said. “We have a down-to-earth style, but Elisabeth will pull us back if the guests or I dive too deep into details.”

 

Affecting health policies

Radium has also had several events with live streaming. At Arendalsuka this year, the premises were fully packed with eager listeners at both of their live shows.

“At Arendal, we try to have podcasts with others in the cancer field and aim to be more political. We think it has worked very well, because we can reach out to even more people when we stream the event,” Elisabeth said.

“I think the podcast will interest people working in the health industry and health politics too,” Einarsson said. “For example, the health minister was a guest for an entire hour, talking about current challenges.”

 

Best of Norwegian research

Radium regularly invites famous names from the Norwegian research community too. Steinar Aamdal, a prominent researcher in cancer immunotherapies has been a guest. Another cancer expert, Håvard Danielsen, who works on the DoMore project at Oslo University Hospital, has also talked on the podcast.

Øyvind Bruland and Roy Larsen, the serial entrepreneurs who started Algeta, Nordic Nanovector and OncoInvent, also visited the show.

Soon, Radium will host Kristian Berg, the researcher behind PCI Biotech’s technology: photochemical internalisation technology.

“I believe people think it is very interesting to, through the podcast, meet the people who actually have researched and developed the treatments,” Einarsson said.

 

For the patients

Einarsson and Andersen have also noticed that cancer patients or their family members listen to the podcast to hear about what is happening in the field.

“It is important to communicate that we do this for the patients. An important driving force is that we wish to contribute to developing better treatments for patients,” said Andersen.

“Every time the survival rate increases, it means one patient gets to live longer – and perhaps that is because of a treatment we have helped to develop,” said Einarsson. “To be a part of the journey with immunotherapy over the last 20 years, for an old doctor like me, is absolutely fantastic.”

 

Listen and download Radium:

 

Send in your ideas for guests and topics directly to Radium.

 

Episode 100 was recorded at Kulturhuset in Oslo, with several interesting guests, a friendly atmosphere and, delicious food and beverages. Stay tuned for upcoming live events via Radforsk’s Facebook page!

 

Sign up to OCC monthly newsletter

Torbjørn Furuseth, Chief Financial Officer, Targovax, is delighted to announce that the company's second part of the clinical trial for skin cancer patients will be held at Oslo University Hospital.

New clinical trial at Oslo University Hospital

Torbjörn Furuseth, Targovax

Our member Targovax has announced a new clinical trial for skin cancer patients at Oslo University Hospital.

The second part of a clinical trial for patients with refractory advanced melanoma (a type of skin cancer) will take place at Oslo University Hospital.

“We are excited that we can offer this treatment alternative to patients in our home country, and hopefully it will help us to recruit more patients faster,” said Torbjørn Furuseth, Chief Financial Officer, Targovax.

Targovax is a Norwegian biotech company that develops oncolytic viruses called ONCOS-102 to destroy cancer cells. The treatment is targeted towards solid tumours that are especially hard to treat. The ultimate goal is to activate the patient’s immune system to fight cancer.

Promising results

“The trial is until now conducted at three top hospitals in the US, where competition for patients to clinical trials is high. Oslo University Hospital is also a great cancer center, and currently there are no trials offered to this patient population,” said Furuseth.

Three out of nine patients responded to the treatment during the first part of the clinical trial. This included one complete response and two partial responses.

Dr. Magnus Jäderberg, CMO of Targovax, said: “It is promising to see this level of clinical responses after only three ONCOS-102 injections, including a complete response, which is rare in this heavily pre-treated patient population.”

A forceful combination

The treatment involves a combination of an oncolytic virus and an anti-PD1 checkpoint inhibitor.

The oncolytic virus is a modified virus that has been developed to selectively attack and kill cancer cells. You can read more about the oncolytic viruses on Targovax’s official website.

The anti-PD1 checkpoint inhibitor disrupts the interaction between proteins on the surface of cancer cells. This stops the cancer from evading the immune system.

“Earlier this year, we decided to expand the trial to test a more intensified schedule of ONCOS-102, and it will be interesting to see whether this regimen can generate more and deeper clinical responses,” said Dr. Alexander Shoushtari, Principal Investigator, Memorial Sloan Kettering Cancer Centre, New York.

The second part of the clinical trial is currently enrolling new patients.

 

Sign up to OCC newsletter

Mandag 7. oktober la finansminister Siv Jensen (til høyre) fram nasjonalbudsjettet og et forslag til Stortinget om statsbudsjett for 2020. Foto: Stortinget

Mer til e-helse og sykehus

Mandag 7. oktober la finansminister Siv Jensen (til venstre) fram nasjonalbudsjettet og et forslag til Stortinget om statsbudsjett for 2020. Foto: Stortinget

I Statsbudsjettet 2020 foreslår regjeringen flere temaer som er relevante for Oslo Cancer Cluster, blant annet å øke investeringer i e-helseløsninger, satse mer på sykehusene og utvide opsjonsskatteordningen for små oppstartsselskap. Men det står lite konkret om kreft.

– Helse og omsorg har stor plass i budsjettet også til neste år, sa finansminister Siv Jensen i finanstalen hun leverte fra Stortingets talerstol 7. oktober 2019.

Jensen ramset deretter opp satsingsområdene som regjeringen har på helse i Statsbudsjettet 2020:

  • mer moderne sykehus med ny teknologi og nye behandlingsformer, flere fastleger og legespesialister
  • oppfylle opptrappingsplanen for rusfeltet 
  • kortere ventetid for pasienter ved sykehusene
  • bedre omsorgstjenester

Du kan lese hele finanstalen på regjeringens nettside.

Lite konkret om kreft

Statsbudsjettet 2020 nevner lite konkret om kreft, faktisk bare to punkter.

  1. Regjeringen foreslår å øke bevilgningene til nasjonalt screeningprogram for tarmkreft med 24,7 millioner kroner i 2020. Det blir en samlet bevilgning på om lag 97 millioner kroner.
  2. Radiumhospitalet skal videreutvikles som et spesialisert kreftsykehus. Dette nevnes i omtalen av den planlagte sykehusomleggingen i Oslo.

Kliniske studier nevnes ikke spesifikt i Statsbudsjettet 2020.

100 millioner til Gaustad og Aker

Regjeringen foreslår at 100 millioner kroner går til nye sykehus på Aker og Gaustad i Oslo. Samtidig foreslås en låneramme på 29,1 milliarder kroner til prosjektet. Det skal legge til rette for at Helse Sør-Øst og Oslo universitetssykehus kan gå i gang med prosjektering og bygging av et nytt, stort akuttsykehus på Aker og et samlet og komplett regionsykehus inkludert lokalsykehusfunksjoner på Gaustad.

I tillegg foreslås en lånebevilgning til universitetsarealer ved det nye sykehuset i Stavanger.

Satsing på e-helse

Regjeringen foreslår et løft for den nasjonale e-helseutviklingen, med 373 millioner kroner. Dette skal få opp tempoet på digitaliseringen i helsetjenesten og legge til rette for å utnytte norske helsedata bedre.

– Norge har omfattende og verdifulle helsedata som er bygget opp over lang tid. Regjeringen ønsker å gjøre disse lettere tilgjengelig for forskere og andre som har behov for å analysere helsedata. Helseanalyseplattformen vil kutte ned på unødvendig byråkrati og tidstyver. Regjeringen foreslår å øke bevilgningen med 131 millioner kroner, sier helseminister Bent Høie i en pressemelding om temaet.

Regjeringen vil også etablere et «standardisert språk», et kodeverk og terminologi i helse- og omsorgssektoren, for å bedre pasientsikkerhet og skape mer samhandling.

Til sist vil regjeringen øke bevilgningene til modernisering av Folkeregisteret i helse- og omsorgssektoren og til forvaltning og drift av de nasjonale e-helseløsningene kjernejournal, e-resept, helsenorge.no, grunndata og helseID.

Pressemeldingen om satsingen på e-helse kan du lese på regjeringens nettside.

Les mer om prioriteringer i budsjettforslaget for Helse og omsorgsdepartemente på side 25 i Statsbudsjettet 2020. 

Dobbelt opsjonsfordel for start-ups

Regjeringen vil utvide ordningen for gunstig skattemessig behandling av opsjoner i små oppstartsselskaper. Maksimal opsjonsfordel per ansatt dobles fra 500 000 kroner til en million kroner. Regjeringen foreslår også å utvide ordningen til å omfatte flere selskap.

I tillegg til at opsjonsfordelen dobles, økes maksimalt antall ansatte i selskap som kan være i ordningen fra 10 til 12. Det gjør at flere små selskap kan benytte ordningen.

Opsjonsskatteordningen for små oppstartsselskap ble innført fra 2018. Under denne ordningen kan ansatte få opsjoner som gir rett til å kjøpe aksjer i selskapet til en fastsatt pris. Ordningen innebærer blant annet at skatteplikten på opsjonene utsettes salg av aksjene kjøpt ved hjelp av opsjonene. Denne skatteutsettelsen er begrenset til en maksimal opsjonsfordel, som nå foreslås doblet.

Utvidelsene må godkjennes av ESA før de kan tre i kraft. Regjeringen opplyser at den jobber for at endringene vil bli godkjent før nyttår, slik at de kan gjelde fra 1. januar 2020.

Flere relevante temaer i Statsbudsjettet

  • Skattefunn: Regjeringen foreslår endringer i Skattefunn-ordningen som skal stimulere næringslivet til å investere enda mer i forskning og utvikling (FoU). Forslagene øker den årlige Skattefunn-støtten med 150 millioner kroner fra 2020. Samtidig foreslår regjeringen flere tiltak som gir bedre kontroll med ordningen. Les mer om skattefunnforslaget på regjeringens nettside.  
  • Protonsenter: 26 millioner foreslås til protonsenter i 2020.
  • Fastlegene: Regjeringen foreslår å bruke om lag 350 millioner kroner til å styrke og videreutvikle fastlegeordningen. De varsler flere tiltak for å styrke ordningen i en handlingsplan som skal komme våren 2020.
  • Legespesialisering: Regjeringen foreslår 10 millioner kroner til allmennleger i spesialisering (ALIS)-kontor i Bodø, Trondheim, Bergen, Kristiansand og Hamar. Tilskuddet gis for å bistå kommuner i regionen til å planlegge, etablere, inngå og følge opp ALIS-avtaler.
  • Statsbudsjettet 2020 er på 1 414,6 milliarder kroner. Staten forventer å tjene 245 milliarder kroner på olje– og gassvirksomheten til neste år.
  • Du kan fordype deg i Statsbudsjettet 2020 på regjeringens temaside.

Sign up to OCC monthly newsletter

Sune Justesen and Stephan Thorgrimsen from Immunitrack are pleased to receive the Eurostars funding to continue to develop the company's prediction tools. Photo: Immunitrack

New tool to improve cancer vaccines receives funding

Sune Justesen and Stephan Thorgrimsen from Immunitrack

Oslo Cancer Cluster member Immunitrack has been awarded a grant from Eurostars to develop their prediction tool for cancer vaccines.

Immunitrack is a biotech company that develops software, which predicts immune responses and assesses new cancer vaccines.

Developing a new vaccine can be a lengthy and expensive process, with a high risk of failure. One key to success is being able to predict how the patient’s immune system will react, so drug developers can bring forth therapies that mobilize the immune system to fight the disease. Immunitrack’s tools can help developers predict the impact of a new drug on the patient’s immune system, before entering clinical trials.

Eurostars supports international innovative projects and is co-funded by Eureka member countries and the European Union Horizon 2020 framework programme. The funding will be used by Immunitrack over a 24-month period for the ImmuScreen Project, to develop a new prediction tool. It will both improve how cancer vaccines work and how to track patients’ immune responses.

“This Eurostar project will give additional momentum to the ongoing development of a best in class neo-epitope prediction tool, PrDx TM, by Immunitrack,” says Sune Justesen, CSO at Immunitrack.

Immunitrack will receive a total of approximately €750 000 from Eurostars, together with the Centre for Cancer Immune Therapy (CCIT), based in Herley, Denmark. CCIT aims to bridge the gap between research discovery and clinical implementation of treatments in the field of cancer immunotherapy.

“The collaboration with the Danish Cancer Center for Immune Therapy, is certainly an important step in validating and implementing PrDx, in the immune therapy treatment of cancer patients,” says Sune Justesen, CSO at Immunitrack.

Immunitrack will handle the software development, while CCIT performs the in vitro validation. The clinical validation will be carried out in melanoma patients. The results will help to characterize immune responses and help to understand why some tumours are immune to novel cancer vaccines.

 

Sign up to OCC monthly newsletter