Researcher Anette Weyergang shows the PCI technology to Norwegian Prime Minister Erna Solberg.

Grants awarded for PDT/PCI research

Erna Solberg visits PCI Biotech

Radforsk has granted seven research projects a total amount of MNOK 1,25 to further develop exciting research projects within photodynamic treatment and photochemical internalization.

Radforsk is an evergreen investor focusing on companies that develop cancer treatments.

“Radforsk has ploughed NOK 200 million of its profit back into cancer research at Oslo University Hospital. Of these, NOK 25 million, have gone to research in PDT/PCI. This year we grant seven projects a total of NOK 1,25 million,” says Jónas Einarsson, CEO of Radforsk.

Radforsk had received a total of seven applications by the deadline on 1 March. All projects were allocated funding.

The applications have been assessed by external experts.

The researchers who have received funding for PDT/PCI research in 2020 are:

  • Anette Weyergang is granted NOK 300 000 to the project: “Photochemical Internalization: Development of a novel tumor-specific protein toxin to defeat aggressive and resistant cancers”
  • Beáta Grallert is granted NOK 100 000 for the project: “Cancer-specific bioluminescence-PDT”
  • Judith Jing Wen Wong is granted NOK 100 000 to the project “Light-enhanced targeting of immunosuppressive tumor cells”
  • Kirsten Sandvig and Tore Geir Iversen are granted NOK 200.000 to the project “Drug-loaded Photosensitizer-Chitoscan Nanoparticles for cominatorial Chemo- and Photodynamic cancer therapy”
  • Mouldy Sioud is granted NOK 200.00 to the project “Antibody- and peptide-targeted photodynamic therapy to kill cancer cells”
  • Qian Peng and Henry Hirschberg are granted NOK 50 500 to the project “Improved therapy of brain tumors by PDT induced anti-tumor immune responses”
  • Qian Peng is granted 300 000 to the project “Photopheresis of patients with Crohn’s disease using 5-aminolevulinic acid”

Read about the projects that were funded in 2019 here.

FACTS

PDT/PCI

Cancer research in the field of photodynamic therapy and photochemical internalisation studies the use of light in direct cancer treatment in combination with drugs, or to deliver drugs that can treat cancer to cells or organs.

Radforsk

Since its formation in 1986, Radforsk has generated NOK 600 million in fund assets and channelled NOK 200 million to cancer research, based on a loan of NOK 1 million in equity back in 1986.

During this period, NOK 200 million have found its way back to the researchers whose ideas Radforsk has helped to commercialise.

NOK 25 million have gone to research in photodynamic therapy (PDT) and photochemical internalisation (PCI). In total, NOK 40 million will be awarded to this research.

Rafiq Hasan has been appointed CEO of EXACT Therapeutics, a Norwegian company with a new technology that can enhance the effect of chemotherapy.

Combating cancer with ultrasound

CEO Rafiq Hasan, EXACT Therapeutics

Our member EXACT Therapeutics gains pharma veteran Rafiq Hasan as CEO, reveals company name change and reports strong progress in first clinical trial.

Our member EXACT Therapeutics, formerly known as Phoenix Solutions, is a Norwegian biotech company developing an innovative platform technology that enables precision therapeutic targeting using ultrasound, with an initial focus in oncology.

The method is called Acoustic Cluster Therapy (ACT®) and has potential utility across multiple therapeutic areas. In oncology, the effect of chemotherapy is amplified through biomechanical effects induced by ultrasound insonation of microbubbles transiently trapped in the microvasculature.

In other words, ACT® is a method to enhance the delivery of chemotherapy with greater precision exactly to the target site of action. Patients receive an intravenous injection of ACT® comprising microbubbles and microdroplets, which are activated at the location of the tumour using conventional diagnostic ultrasound. This creates large bubbles that apply transient and controlled pressure to the vascular wall enabling greater extravasation of the co-administered chemotherapeutic. In essence, this means that more chemotherapy is “pumped” into the tumour. The potential is that chemotherapy can achieve greater therapeutic efficacy using standard of care chemotherapy, resulting in better clinical outcomes for patients living with cancer.

Watch the video below to learn more about the technology in detail.

Pharma veteran appointed CEO

EXACT Therapeutics recently appointed Rafiq Hasan as CEO to lead the company on its journey to commercialise ACT. Rafiq Hasan is a seasoned veteran of the pharma business and has held several top positions in Bayer and Novartis.

Dr Hasan commented: “There has been tremendous progress in the last 8 years within the field of microbubbles and sonoporation, driven forward by ACT® and EXACT Therapeutics. Through its targeted delivery, ACT® has the potential to enhance therapeutic efficacy of a multitude of products across numerous therapeutic areas. This exciting science with the potential to have a transformative impact on medicine and patients, and I could not pass up this opportunity to lead EXACT Therapeutics into its next phase. I am impressed with the preclinical data where ACT® shows efficacy across a range of drugs and disease models, whilst the clinical development is already underway with the Royal Marsden Hospital/the Institute of Cancer Research.”

Clinical trial ongoing

EXACT Therapeutics is now reporting strong progress in an ongoing clinical trial, which started at the Royal Marsden Hospital in September 2019. The clinical trial is investigating ACT® in combination with standard of care chemotherapy for treating colorectal and pancreatic cancers.

Watch the video from BBC News of the first patient to test the new treatment.

Visit the original homepage to learn more about EXACT Therapeutics.

Sign up to our monthly newsletter

Per Håvard Kleven is the founder of Kongsberg Beam Technology, a company that develops technology for proton therapy centres, which will benefit cancer patients.

Improving proton therapy for cancer patients

Per Håvard Kleven, founder of Kongsberg Beam Technology

Kongsberg Beam Technology has entered an agreement with the Research Council of Norway to develop precision technology for proton therapy centres.

The grant will secure the company a total of NOK 23 million in support to develop a technology that improves the accuracy of proton therapy in combating cancer.

Many cancer patients receive radiotherapy treatment to destroy the cancer cells. The big negative side-effect is that healthy cells around the tumour are also damaged.

Proton therapy is more precise, which means that there is less damage to healthy tissue and organs surrounding the cancer. This reduces the unwanted side effects and improves the quality of life for the patient.

Kongsberg Beam Technology has developed a technology that increases the accuracy of proton therapy, even when the patient or their organs may be moving, for example while their lungs are breathing.

The technology creates a digital twin, a virtual copy of the patient. The digital twin gives a dynamic and predictive real-time image while the tumour is treated with proton therapy. This makes the treatment even more exact than before.

The system is called MAMA-K, which is short for Multi-Array Multi-Axis Cancer Combat Machine. The machine treats the tumour with several proton beams at the same time and is especially adapted for organs in motion. The system can be plugged into both current and new proton machines.

“The MAMA-K system will be clinically beneficial and yield significantly improved treatment effects to patients compared to state-of-the-art systems and procedures,” said Karsten Rydén-Eilertsen, Ph.D. Head of Section, Department of Medical Physics at Oslo University Hospital.

Oslo Cancer Cluster Incubator has assisted Kongsberg Beam Technology with business development advice and help in pursuing funding opportunities.

“The support from Oslo Cancer Cluster Incubator has been vital in reaching where we are today,” says Per Håvard Kleven, the founder of Kongsberg Beam Technology.

Semcon is another important collaboration partner, who is responsible for the technical and digital development of the project.

The first phase of the project will last until 2022. This has begun with securing the proof-of-concept, which means that Kongsberg Beam Technology has demonstrated that the concept has a verified practical potential. Now, a prototype is in development, which will be used to test the system. During phase 2 of the project, the system will be tested and verified until 2024 to prove that it works.

Norway currently does not have any proton therapy centres, but two are already in the planning stages. One will be in Oslo, at the Norwegian Radium Hospital, and one in Bergen, at Haukeland University Hospital. The first Norwegian cancer patients will be treated with proton therapy in 2024.

The MAMA-K system that Kongsberg Beam Technology are developing will be tested at The Norwegian Radium Hospital, a part of Oslo University Hospital.

Other collaboration partners are the University of Oslo and Onsagers.

Sign up to our monthly newsletter

Ønsker virtuelle studier til Norge

This article was originally published on our member Inven2’s website and written by Elisabeth Kirkeng Andersen in Norwegian. Oslo Cancer Cluster supports this member’s initiative of introducing virtual clinical studies to Norway.

Inven2 håper at vi snart kan starte såkalte virtuelle kliniske studier på oppdrag fra industri i Norge. Virtuelle kliniske studier innebærer utstrakt bruk av digitale verktøy for å samle inn dataene som er nødvendig for at et legemiddel kan godkjennes. Oslo universitetssykehus og legemiddelfirmaet Bristol Myers Squibb (BMS) er veldig positive.

–Vi har alle forutsetninger for å lykkes med virtuelle studier og det kan være et stort fortrinn for å tiltrekke flere kliniske studier til Norge, sier Siri Kolle. Hun er ansvarlig for kliniske studier i Inven2.

Virtuelle studier kalles også «Decentralised Clinical Trials», og går blant annet ut på å ta i bruk digitale verktøy og avstandsoppfølging av studiedeltakere.

Det svenske Läkemedelsverket er i gang med en kartlegging i Sverige for å finne ut hva som kreves for å  gjennomføre virtuelle kliniske studier på en sikker og effektiv måte, og hva som allerede er på plass.

Jenny Söderberg er prosjektleder for dette og påpeker i en pressemelding at nær 70% av potensielle deltagere til kliniske studier er utelukket på grunn av geografiske hensyn.

–Jeg vil tro det samme gjelder for Norge. Dette viser hvilket enormt potensiale for bedre pasientbehandling som ligger i virtuelle studier. Ikke minst kan virtuelle studier bety bedre, bredere og raskere rekruttering til en studie, noe som er det viktigste får både firmaene og pasientene, sier Kolle.

Siri Kolle, ansvarlig for kliniske studier i Inven2.

Legemiddelindustrien på ballen

Kolle synes det svenske pilotprosjektet er spennende, og følger spent med på det og andre initiativ rundt virtuelle studier. Hun og kollegaene i Inven2 har allerede gjennomført en forundersøkelse ved Oslo universitetssykehus, basert på at de i starten av 2020 fikk flere henvendelser fra legemiddelfirmaer om hva som er mulig å gjøre innen virtuelle studier i Norge i dag.

–Både videoløsninger for pasientkonsultasjon og elektronisk samtykke kan enkelt tas i bruk allerede. I tillegg har vi sendt flere store legemiddelfirmaer kravspesifikasjonene som Oslo universitetssykehus har, på bruk av informasjonssystemer, så de er informert om retningslinjene sykehuset har på dette, sier Kolle.

Det setter Susanne Hedenstedt stor pris på. Susanne er senior prosjektleder for kliniske studier i Norden i biopharma selskapet BMS, hvor hun også er med i en intern, global, arbeidsgruppe innen virtuelle kliniske studier.

–Virtuelle studier bobler i verden. Det er mange legemiddelfirmaer som ser på muligheten for å gjennomføre hele eller deler av studiene sine digitalt. BMS planlegger å starte opp en virtuell oppfølgingsstudie innen kreft i løpet av 2020, og vi håper å få med et norsk sykehus i den studien, sier Hedenstedt.

Hedenstedt er tydelig på at BMS ønsker å gå i gang med virtuelle kliniske studier, og tror dette kan være en «gamechanger» for pasientene og for utvikling av nye behandlinger, i alle fall innen noen sykdommer.

– Pasientrekruttering er en av de største utfordringene i kliniske studier. Det tar lang tid og forsinker hele prosessen med eventuelt å få godkjent en ny behandling. I tillegg skjer det ofte at en del av pasientene ikke fullfører hele studieperioden. Det kan være på grunn av sykdommen eller andre faktorer, som reisevei. Det er tøft for svært syke pasienter å reise tur-retur til et sykehus hvor studiene gjennomføres. Gjennom virtuelle studier kan vi involvere pasienten på en mer hensiktsmessig måte i deres eget hjem, sier Hedenstedt.

Koronapandemien har satt fortgang i arbeidet med virtuelle studier i BMS. Den globale unntaktstilstanden har ført til at BMS, som ett av mange legemiddelfirmaer, har satt en midlertidig pause for oppstart av nye studier og rekruttering av pasienter til kliniske studier.

– Vi har tatt disse proaktive grepene for å beskytte og ta vare på sikkerheten til både studiedeltakere, våre ansatte og de ansatte på sykehusene som jobber med kliniske studier, sier Hedenstedt.

Hun påpeker at pausen også er satt for å sikre at studiene gjennomføres i tråd med regulatoriske retningslinjer og at dataene holder høy vitenskapelig kvalitet.

–Koronapandemien kommer til å føre til en eksplosjon av virtuelle studier. Det er veldig positivt at Inven2 ønsker å bidra til å innføre dette i Norge, sier Hedenstedt.

Oslo universitetssykehus er positivt innstilt

Så hva er egentlig den største forskjellen på en vanlig klinisk studie og en virtuell, desentralisert klinisk studie?

Begrepet desentralisert er beskrivende, fordi hovedforskjellen er at studieoppfølgingen flyttes så mye som mulig fra et sykehus hjem til den enkelte pasienten. Han eller hun bruker sitt lokale legekontor for blodprøver, og ulike digitale løsninger for å rapportere inn data i studien. Mer avanserte undersøkelser som MR, PET-skan og røntgen må fremdeles gjennomføres på sykehus.

I Norge har begrepet telemedisin gjerne blitt brukt om denne typen oppfølging av pasienter

Telemedisin er et område Norge er langt framme på internasjonalt, på grunn av vår spredte befolkning som i store deler av landet bor langt unna sykehus eller fastlegekontor.

–Det norske helsevesen sin lange erfaring med telemedisin innebærer at vi har alle forutsetninger for å være et foregangsland innen virtuelle studier, sier Kolle.

Noen flere elementer må på plass for å gå fra telemedisin til virtuell gjennomføring av kliniske studier.

–Elektronisk samtykke fra pasientene til å delta i en studie er et element, videokonsultasjoner med lege eller studiepersonell er et annet, og i tillegg kommer utstrakt innsamling av pasientrapporterte data. I dette ligger det at pasienten selv rapporterer om egen fysisk og psykisk helse basert på egen erfaring og helsedata hentet fra ulike former for «wearables», det vil si en pulsklokke eller lignende som måler blodtrykk og andre vitale funksjoner, sier Kolle.

Alle disse tre elementene er i bruk i helsevesenet i dag, sier Peder Utne. Utne leder avdeling for administrativ forskningsstøtte ved Oslo universitetssykehus.

–Digitale verktøy brukes i stor grad i forskerinitierte studier, og det er ingenting i veien for å ta det i bruk i industrisponsede studier. Det som må være på plass er selvfølgelige datasikkerhet, det vil si at de digitale løsningene er trygge i bruk for deltagerne og i tråd med internasjonale retningslinjer for personvern, sier Utne.

Et eksempel på en pågående, virtuell studie i Norge, er koronastudien der Oslo universitetssykehus kartlegger risiko for å bli smittet av koronaviruset. Her bruker de både elektronisk samtykke og spørreskjema for å innhente egenrapporterte data. Så langt har studien over 100.000 deltagere.

–Vi er veldig positive til virtuelle kliniske studier. På et generelt grunnlag mener jeg det meste er på plass for å gjennomføre dette. Det vil være noen utfordringer som er avhengig av den enkelte studiens design. Dette kan gjelde de spesifikke systemene som skal tas i bruk for å hente inn data, samt utfordringer knyttet til personvern og datasikkerhet, samt hvordan endringer i en virtuell studie skal rapporteres til Regional Etisk Komite´(REK), som er ansvarlig for å godkjenne studien, sier Utne.

Han mener at koronapandemien kan være enkelthendelsen som sparker i gang et stort digitalt løft innen helsektoren som en helhet.

–Det er nok på mange måter sånn at legemiddelindustrien har vært for tradisjonell når det gjelder gjennomføringen av kliniske studier, så det blir spennende å se hva som kommer nå, sier Utne.

Les en god beskrivelse av forskjellene på en vanlig kliniske studie og en virtuell kliniske studie i denne forskningsartikkelen «Virtual clinical trials: Perspectives in Dermatology».

Korona med digitalt dytt

Koronapandemien har ført til at videkonsultasjoner har blitt tatt i bruk som aldri før ved norske sykehus. Det fortalte flere av landets fremste kreftleger på et webinar Dagens Medisin arrangerte i mars, om hvordan koronapandemien har påvirket kreftbehandlingen i Norge.

–Pandemien har tvunget oss alle til å tenke nytt og ta i bruk digitale verktøy på en annen måte en før. Se på skolesektoren hvordan lærerne fra én dag til en annen måtte ta i bruk videoverktøy for å undervise. Det samme har skjedd med de ansatte i helsesektoren, som fra en dag til en annen måtte forholde seg til pasienter som ikke ønsket å møte opp på sykehuset i frykt for å bli smittet der eller på reisen, eller pasienter som ikke burde utsette seg for risikoen. I noen tilfeller er videokonsultasjon med pasienter enklere og mer effektivt, for både pasient og behandler, sier Kolle.

Hun mener Norge bør utnytte det digitale momentumet koronapandemien har medført, til å endre praksis innen kliniske studier og utføre så mye som mulig digitalt framover.

–Koronapandemien påvirket fra midten av mars av gjennomføringen av pågående studier og særlig oppstart av nye kliniske studier i Norge, siden de store sykehusene alle var i gul beredskap. I en slik global krisesituasjon er digitale verktøy gull verdt for å gjennomføre kliniske studier som normalt på tross av unntakstilstanden, det er det beste for pasientene, sier Kolle.

Nå melder sykehusene i Norge at de er i gang igjen med både pågående studier og oppstarten av nye. Det er ikke tilfellet i verden generelt, særlig land som har blitt sterkt rammet av koronapandemien som Italia, Spania, Storbritannia og USA, melder om store forsinkelser.

–Oppsiden med å ta i bruk virtuelle studier er så mange, så dette må vi få til. I tillegg må vi ta inn over oss at ønsker vi flere kliniske studier til Norge i fremtiden, er vi helt avhengige av å være med på utviklingen og ta i bruk nye verktøy, sier Kolle.

Hun har på vegne av Inven2 spilt inn nødvendigheten av å satse på virtuelle kliniske studier til den nye handlingsplanen for kliniske studier som Helse- og omsorgsdepartementet arbeider med nå.

New member: Adjutec Pharma

Image of Oslo Cancer Cluster Innovation Park

In this article series, we will introduce the new members of our oncology cluster.

Antibiotic resistance is one of the treats for cancer patients’ survival. Meet our new member Adjutec Pharma, a company with new technology against multi-drug resistant bacteria.

Multi-drug resistant bacteria are spreading across the globe and cannot easily be treated with antibiotics. Cancer patients are an especially vulnerable group, because their immune systems may be extra susceptible to different bacteria and virus while undergoing treatment.

In Norway, new technology has been developed to combat multi-drug resistant bacteria. We asked the founder of the company Adjutec Pharma, Professor Pål Rongved, to tell us more about this new tecknologi.

Who is Adjutec Pharma and how are you involved in health and cancer?

Antibiotic resistance can render modern medicine useless, if new technology is not found. The biotech start-up AdjuTec Pharma AS was established in 2019 by the main grounder, Professor Pål Rongved, UiO, to develop their cutting edge technology (ZinChel). Their compounds have proved very effective as low-toxic adjuvants in combination with last resort antibiotics against a wide range of multidrug-resistant Gram-negative bacteria. These are increasingly spreading across the globe. These bacteria are at the top of the WHO’s list of 12 ‘priority pathogens’, representing the most dangerous bacteria in the world.

Why did Adjutec Pharma become a member of Oslo Cancer Cluster?

“About 20 % of the cancer patients are dying from infectious diseases, making the technology highly relevant for the cancer clinic. The OCC Incubator is a unique partner for networking and a number of services that aids exchange of expertise, comprises a spectrum of companies, institutions and organizations. This gives a valuable opportunity to contribute to aiding the cancer patients with their secondary infections, and further stimulates research collaborations,” said Rongved.

Sign up to our monthly newsletter

Richard Godfrey, CEO, BerGenBio - a Norwegian biotech company that has developed a cancer treatment that is now being trialled on COVID-19 patients.

Norwegian cancer drug in COVID 19-programme

Richard Godfrey, CEO BerGenBio

British health authorities are testing six medicines against the coronavirus and bemcentinib from the Norwegian biotech BerGenBio is the first treatment to be tested.

Bemcentinib is an AXL inhibitor that our member BerGenBio has developed to treat cancer, by boosting the patient’s immune system. Now, bemcentinib will be evaluated by the British government as a treatment option for COVID-19 patients.

On Tuesday, the British government launched the ACCORD programme (Accelerating COVID-19 Research & Development platform). It is an accelerated research and development programme for the treatment of COVID-19.

So far, no medicine has been found to treat COVID-19, but the work group behind ACCORD has selected six promising candidates, of which the drug bemcentinib from BerGenBio is the first to be trialled.

The study will include 120 patients, of which 60 are COVID-19 patients currently in hospital and the other 60 are a control group who receive standard treatment. The first data from the clinical testing may be available already in the next few months. If the results are positive, the clinical trial will continue to a larger second stage (phase 3).

The study is financed by the Department of Health and Social Care and UK Research and Innovation.

Bemcentinib is already in clinical trials as a cancer treatment and early testing has shown that the treatment has antiviral effects.

Richard Godfrey, Chief Executive Officer of BerGenBio, commented: “We are delighted to be part of this initiative which is a ground-breaking partnership between government, academia and industry.  We are hopeful that bemcentinib can play a significant role in the global effort to find suitable treatment options for COVID-19 patients, which has had such serious implications for so many people and thereby ease pressures on hospital intensive care units, and ultimately treat thousands of patients. We are poised to commence dosing in the coming days and will provide results as soon as is practically possible.”

Read the press release from BerGenBio

Letter from CEO Richard Godfrey on COVID-19 Clinical Trial

In the Norwegian news:

Dr. Richard Stratford and Dr. Trevor Clancy are the founders of NEC OncoImmunity AS, a company that has developed artificial intelligence technologies against cancer, which will now also be used for a SARS-COV-2 vaccine.

Artificial intelligence in the fight against COVID-19

Dr. Richard Stratford and Dr. Trevor Clancy, founders of OncoImmunity

Our member NEC OncoImmunity has adapted their cancer-fighting artificial intelligence technology to combat COVID-19.

Advanced cancer technologies and artificial intelligence may prove to be key in the search for a vaccine against the SARS-COV-2 virus. The Norwegian biotech company NEC OncoImmunity AS (NOI) is now accelerating efforts to create a vaccine to combat the COVID-19 pandemic.

“This COVID-19 project represents an exciting opportunity for NOI to showcase its AI-driven epitope prediction platform the “NEC Immune Profiler” in the field of infectious disease. Whilst NOI has focused its efforts to-date on the oncology field, especially the design of personalized therapeutic cancer vaccines, its AL-platform is equally well suited to designing vaccines to address infectious diseases,” said Dr. Richard Stratford, Chief Executive Officer, at NEC OncoImmunity.

This week, NEC OncoImmunity AS announced analysis results from efforts using AI prediction platforms to design blueprints for SARS-CoV-2 vaccines that can drive potent T-cell responses in the majority of the global population.

These AI prediction platforms are based on the AI technology used by NEC and NOI in the development of personalized neoantigen cancer vaccines.

“It is encouraging that our AI and bioinformatics platform can design vaccine blueprints that have the potential to induce a broad T-cell response, that may not only be protective, but also stimulate a long-lived memory immune responses against SARS-CoV-2 and its future mutated versions”, said Dr. Trevor Clancy, Chief Scientific Officer, at NEC OncoImmunity and the lead corresponding author in the paper.

Artificial intelligence against cancer

NEC OncoImmunity is a Norwegian biotech company, founded by Dr. Richard Stratford and Dr. Trevor Clancy in 2014 and the company has been a member of Oslo Cancer Cluster since its early days.

The founders’ vision was to use innovative software solutions for the development of personalized neoantigen vaccines. The machine learning software they have developed can identify neoantigens, which are key to unlocking the immune system and combating cancer.

NEC OncoImmunity developed the technology and grew the company in the Oslo Cancer Cluster ecosystem, making use of the cluster’s advice and support, and networking and partnering opportunities.

Backed by a tech corporation

In 2019, the Japanese multinational tech corporation NEC acquired OncoImmunity AS. NEC had recently launched an artificial intelligence driven drug discovery business and stated that NEC OncoImmunity AS would be integral in developing NEC’s immunotherapy pipeline.

NEC OncoImmunity have been working hard for the last months to adapt their technologies to help in the fight against COVID-19.

“As a company that seeks to enhance the well-being of society, NEC will continue to capitalize on research and development that maximizes the strengths of our AI technology to help prevent the spread of COVID-19. In collaboration with companies and institutions around the world, we aim to enable people to live their daily lives with as much safety and security as possible,” said Motoo Nishihara, Executive Vice President and Chief Technology Officer at NEC.

NEC is now publishing this research to support scientific advancements in the field and is ready to start partnering efforts to pursue the development of an effective vaccine targeting the global population.

 

Sign up to our monthly newsletter

New member: Glaxo Smith Kline

Image of Oslo Cancer Cluster Innovation Park

In this article series, we will introduce the new members of our oncology cluster.

Find out how Glaxo Smith Kline (GSK), the latest global pharmaceutical company to enter into our ecosystem, is contributing to the oncology field.

Glaxo Smith Kline is one of the largest research-based pharmaceutical companies in the world, with over 80 employees located in Norway. The company was founded in 2001, but its history can be traced all the way back to the 1700s. Today, they have an impressive portfolio of vaccines, as well as many promising immunotherapy treatments underway.

We asked a couple of questions to Halvard Grønlien, country medical director of GSK Norway, to find out more about their plans in the oncology area.

Tell us about GSK and how the company is involved in the cancer field.

“GSK is a science-led global healthcare company with more than 100 000 employees in over 150 countries and around 80 people in GSK Norway. Our goal is to be one of the world’s most innovative, best performing and trusted healthcare companies. Our pharmaceutical and vaccines businesses have a broad portfolio of innovative and established vaccines and medicines with commercial leadership in respiratory and HIV. Our vaccines business has a portfolio of more than 30 vaccines, helping to protect people against 21 diseases. We are the biggest supplier of vaccines to the Norwegian immunization program. Our R&D approach focuses on science related to the immune system, use of genetics and advanced technologies, and our strategy is to bring differentiated, high-quality and needed healthcare products to as many people as possible.

“Within oncology, we are committed to maximizing patient survival through the development of transformational medicines. Since 2018, we have more than doubled the number of oncology assets in clinical development through our own science, the acquisition of TESARO and other alliances. We aim to deliver a sustainable flow of new treatments based on a diversified portfolio of investigational medicines utilizing modalities such as small molecules, antibodies, antibody drug conjugates and cells, either alone or in combination. Our innovative portfolio focuses on four cutting edge areas of science that we believe offer the greatest opportunities to provide meaningful solutions for patients:

  • Immuno-oncology: using the human immune system to treat cancer
  • Cell therapy: engineering human T-cells to target cancer
  • Cancer epigenetics: modulating the gene-regulatory system of the epigenome to exert anti-cancer effects
  • Synthetic lethality: targeting two mechanisms at the same time which together, but not alone, have substantial effects against cancer”

Why did GSK join Oslo Cancer Cluster?

“GSK has an increasing pipeline of new oncology assets and in the process of establishing a network within oncology. Oslo Cancer Cluster is an important part of the oncology landscape in Norway and indeed an important partner for GSK. We are looking forward to partnering with Oslo Cancer Cluster when arranging scientific meetings and dialogues, bringing investigators together for fruitful clinical research collaborations, and bridging GSK global discovery team with biotech/startup community in Norway looking for new R&D investments.”

gsk logo

Sign up to our monthly newsletter

New member: Vesteraalens

Image of Oslo Cancer Cluster Innovation Park

Our non-profit membership organisation is growing and in this article series, you will be introduced to each new member that joins our cluster.

Find out why a company specialising in seafood and marine ingredients has become a member of an oncology cluster.

Vesteraalens is one of the newest members of Oslo Cancer Cluster. The company was founded in Norway in 1912 and has been producing high-quality seafood for over a century. Among other things, the company produced the food supplies for the famous explorer Roald Amundsen’s expedition through the Northeast Passage.

The fish oil Omega-3 was not only an essential component of a famous explorer’s diet, it could also become an important supplement to cancer treatments. Vesteraalens are exploring the health benefits of Omega-3 oil to improve clinical nutrition for patients undergoing cancer treatments. We talked to Viktor B. Johnsen, CEO at Vesteraalens, to find out more about what they do in the cancer field.

Could you briefly describe Vesteraalens and the role you are taking in cancer and health?

“Vesteraalens AS is an innovative seafood- and marine ingredients company, which produces a wide variety of products, like fresh cod and haddock loin filets, fishballs, soup and ingredients like marine Omega-3 oil, proteins and minerals. Vesteraalens has a vision to become an important contributor to research and development in the marine ingredients sector with focus on nutrition, sustainability and ethical production. Much focus and research these days are on the use of Omega-3 oil in clinical nutrition. There are findings indicating that Omega-3 supplements during cancer treatments have significant positive health benefits for the patients,” said Johnsen.

Why did Vesteraalens join Oslo Cancer Cluster?

“Oslo Cancer Cluster provides a unique opportunity to get in touch with other professionals interested in clinical nutrition as a supplement to cancer treatment. Our motivation for membership in Oslo Cancer Cluster is closely related to further research concerning the effects of Omega-3 for the immune-system and especially related to cancer treatment. The data collected so far show significantly positive results and we are eager to do more research with potential collaborating Oslo Cancer Cluster’s partners to hopefully be able to document the effects scientifically. We find the network in Oslo Cancer Cluster very valuable,” said Johnsen.

 

Vesteraalens logo

 

Sign up to our monthly newsletter

Photo: Eva Dang / Unsplash

LINK Medical opens new London office

Photo of London by Eva Dang, Unsplash

Our member Link Medical has expanded its organisation with an office in London.

LINK Medical is a full-service contract research organisation that provides product development services for the pharmaceutical and medical device industries across Europe. The company was founded in Norway in 1995 and has since then grown to employ 175 people from various specialist backgrounds, including a specialized oncology team.

Now, LINK Medical’s clinical research services have also expanded to biopharma and medtech in the UK, with an office in London.

LINK Medical CEO, Dr. Ola Gudmundsen says: “We look forward to start building on the competent team already present in the UK to further engage with this important market. We can now offer our customers enhanced service capacity in the UK, helping to drive forward their clinical projects, and thus supporting and improving healthcare for all.”

We are happy that LINK Medical is a part of our cluster organisation and that they are contributing to accelerate the development of cancer treatments.

Sign up to our monthly newsletter