Cancer Crosslinks LIVE streaming

Today, Thursday 17 January, we broadcast LIVE from our conference Cancer Crosslinks at Oslo Cancer Cluster Innovation Park.

Please join us and hear from a distinguished panel of international and Norwegian experts as they discuss the Next Wave of Precision Oncology, share new perspectives, and address the challenges and opportunities ahead. The subtitle of this year’s 11th Cancer Crosslinks is “Next Wave Precision Oncology – Connecting the Dots for Improved Patient Care”.

The broadcast starts at 9 AM and last until the conference ends at about 4 PM. Please follow the link to watch LIVE:

LIVESTREAM HERE

 

If you would like to know more about the international speakers at Cancer Crosslinks 2019, please read this article.

New research: 3D structure tumors in immunotherapy

Written by Joseph Mark Robertson

New work from cancer researchers at the Department of Cellular Therapy could help to streamline the development of exciting new immunotherapy approaches for treating cancer.

Cancer treatments that aim to switch on a patient’s immune system to kill tumor cells – so-called immunotherapy approaches – have received much attention and encouraging results in recent years. Now, the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital has devised a new experimental approach that could improve early stages of the immunotherapy development pipeline.

The unit is present in Oslo Cancer Cluster Incubator with a translational research lab, led by Drs. Else Marit Inderberg and Sébastien Wälchli.

Dr. Sébastien Wälchli and colleagues in the translational research lab in Oslo Cancer Cluster Incubator. Photo: Christopher Olssøn

CAR T cells drive new successes
Our immune systems are generally very good at recognizing foreign infectious agents and disposing of them appropriately. However, although our immune systems are capable of recognizing tumors as a threat, cancer cells have adapted mechanisms that enable them to evade the immune response. Immunotherapy is the name given to a range of different approaches that aim to overcome this problem by improving the immune system’s ability to target cancer cells.

One relatively new example of an immunotherapy approach comes from CAR T cells. These are produced by isolating specific cells of the immune system (T cells) from a cancer patient and modifying them so that they become more effective at recognizing and killing cancer cells. The modified T cells are then placed back into the patient so that they can ‘home in’ on the tumor and kill the cancer cells.

Read about related research: T-cells and the Nobel Price

Difficult for solid cancers
Current models for testing new CAR T cells aren’t always optimal. Although CAR T cells have shown encouraging results in treating some cancers, particularly the blood cancers leukemia and lymphoma, the development of CAR T cells for non-blood, or ‘solid’, cancers has been more difficult.

In part, this is due to the fact that tumor models currently used in early stages of testing involve two-dimensional monolayers of cancer cells, which do not reflect the complex three-dimensional structure and organization of solid tumors found in patients.

Consequently, CAR T cells that show encouraging results using these two-dimensional models often produce less effective results at later stages of the development pipeline, meaning time, effort and resources are wasted.

3D tumor spheroids
To improve the early stages of testing new CAR T cells, Dr. Wälchli’s group has developed a new approach that enables researchers to grow three-dimensional cancer cell structures, or ‘spheroids’, in the lab, and to test the effect that CAR T cells have on killing off these spheroids.

Compared to current two-dimensional methods, the spheroids are more similar in complexity and structure to tumors found in patients.

In a recent publication in the Journal of Visualized Experiments, this group demonstrated for the first time that their spheroid approach has the potential to provide a useful new tool for developing CAR T cells.

They generated spheroids using colorectal cancer cells – a type of cancer for which there is currently no effective CAR T cell therapy available. These cancer cells were modified so that they possessed a molecule on their cell surface called CD19, which is known to be recognized by certain CAR T cells. The researchers then incubated these spheroids with CD19-targeting CAR T cells and used advanced live imaging techniques to track the effect on cancer spheroids.

 

A Spheroid Killing Assay by CAR T Cells

To help other research groups who would like to start using the spheroid technique, Dr. Wälchli’s publication is accompanied by this video which introduces the approach and provides a basic overview of how it works. The Journal of Visualized Experiments requires a subscription to see the entire video. You can also read a PDF of the article “A Spheroid Killing Assay by CAR T Cells” without a subscription.

Successful approach
As expected, shortly after adding CAR T cells, the researchers could detect that spheroids were shrinking due to cancer cell death, proving that their approach successfully measures CAR T cell-induced tumor clearance in a quantitative manner.

Discussing the work, Dr. Wälchli says, “We believe this method can help to answer key questions about using 3D structure tumors as a suitable alternative for testing new immunotherapy approaches.”

The approach now opens the door for testing a range of different target molecules in combination with new CAR T cells targeting those molecules.

Fast, affordable and straightforward
Dr. Wälchli believes many researchers could benefit from the spheroid technique. He continues,

“A major advantage to our approach is that it is fast, affordable and straightforward, meaning any research group with the right equipment can test the effect of their immunotherapy on 3D tumors before moving to animal models”.

International speakers at Cancer Crosslinks

How can research help implement the next wave of precision oncology for patients? Meet the experts behind the research.

 

These leading international experts are part of the programme at Oslo Cancer Cluster Innovation Park, 17 January.
Not signed up for the 11thCancer Crosslinks yet? Join in here!

 

Professor Naiyer Rizvi is an internationally recognized leader in the treatment of lung cancer and immunotherapy drug development. He is the director of both thoracic oncology and of immunotherapeutics for the division of haematology and oncology at Columbia University Medical Center, Herbert Irving Comprehensive Cancer Center, New York, USA.

Prior to joining Columbia University Medical Center, his clinical research at Memorial Sloan Kettering Cancer played a significant role in the FDA approval path of a new class of immunotherapies, called immune checkpoint inhibitors, for melanoma and lung cancer.

Rizvi studies mechanisms of sensitivity and resistance to immunotherapy. Through genetic testing of tumours, he has been able to improve the understanding of why immune checkpoint inhibitors work in certain patients.

Rizvi is also studying why certain cancers do not respond to immune checkpoint inhibitors. This way we can find better ways to harness the immune system to attack cancer cells.

He oversees phase 1 immunotherapy research in solid tumours at Columbia University Medical Center and is conducting key clinical studies of novel immunotherapy drugs and immunotherapy combinations to help more patients in the fight against cancer.

Professor Naiyer Rizvi

During Cancer Crosslinks, Professor Rizvi will give the opening keynote speech titled: “Sensitivity and resistance to immuno-oncology: Biological insights and their translation into precision treatment”.

 

Dr. Aaron Goodman, MD, is a haematologist and medical oncologist specialized in treating a variety of blood cancers, including acute myeloid leukemia (AML), acute lymphocytic leukemia (ALL) and multiple myeloma. He holds a position as Assistant Professor of Medicine at the Moores Cancer Center at UC San Diego Health in La Jolla, California.

Dr. Goodman performs stem cell transplants for cancer treatment. He also treats people with rare haematologic disorders using experimental therapeutics.

His research interests include immunotherapy and cellular therapy treatment for haematologic malignancies and identifying biomarkers for response to immunotherapy.

Dr. Aaron Goodman

During Cancer Crosslinks, Dr. Aaron Goodman will present and discuss the clinical aspects of tumour mutational burden and other tissue agnostic biomarkers for cancer immunotherapy.

 

Dr. Randy F. Sweis is an Assistant Professor in the haematology/oncology section at the University of Chicago. He works with cancer immunology, developmental therapeutics and biomarkers, with a clinical interest in phase 1 clinical trials and genitourinary malignancies. His laboratory research involves the identification and targeting of tumour-intrinsic immunotherapy resistance pathways.

Dr. Sweis is the recipient of numerous awards. In 2017, he was elected to co-lead TimIOs, an international project aimed at tackling tumor heterogeneity to enhance immunotherapy responses supported by the Society for Immunotherapy of Cancer (SITC).

Dr. Randy F. Sweis

During Cancer Crosslinks, Dr. Randy F. Sweis presents his work on immunophenotypes: The T cell-inflamed tumour microenvironment as a biomarker and its clinical implications.

 

Dr. Marco Gerlinger is a clinician scientist at the Center for Evolution and Cancer at the Institute of Cancer Research in London. He develops novel techniques to detect and track intra-tumour heterogeneity in solid tumours to define evolutionary plasticity and common evolutionary trajectories in cancers.

Dr. Gerlinger uses genomics technologies for treatment personalization. He treats patients with gastrointestinal cancers at The Royal Marsden NHS Foundation Trust.

One of the key aims of his work is to develop strategies to improve predictive and prognostic biomarker performance and the efficacy of drug therapy in heterogeneous cancers.

He contributes to The Darwin Cancer Blog– on mutational evolution of cancer.

Dr. Marco Gerlinger

During Cancer Crosslinks, Dr. Marco Gerlinger will share the latest insights into cancer evolution and discuss the limits of predictability in precision cancer medicine. 

 

Professor Dr. med. Lars Bullinger is Professor of Hematology and Oncology and Medical Director of the Department of Hematology, Oncology and Tumor Immunology at Charité University Medicine Berlin.

He is a partner in the Innovative Medicines Initiative project HARMONY (Healthcare alliance for resourceful medicines offensive against neoplasms in haematology) aiming to use big data to deliver information that will help to improve the care of patients with haematologic cancers.

In this video from June, you get a preview of the subject he will talk about at Cancer Crosslinks: 

During Cancer Crosslinks, Dr. Lars Bullinger will give an international keynote speech about haematological cancers, emerging treatment opportunities and the impact of big data. 

 

James Peach is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, UK. Prior to this role, he was the Managing Director at the main programme for Genomics England from 2013 to 2017.

Peach is a precision medicine strategist and operational leader with investment, commercial and public sector experience across cancer, rare diseases, and genetics. James Peach gave the opening keynote at Cancer Crosslinks 2012 – at that time as the Director for Stratified Medicine at Cancer Research UK, London.

In this video James Peach explains the challenges with access to health data for drug discovery and how to overcome them:

During Cancer Crosslinks, James Peach will present his perspectives on the implementation of precision medicine in the UK and discuss the status, lessons learned and the way forward. 

 

Not signed up for Cancer Crosslinks yet? Join in here!

 

 

Machine-learning for immunotherapy

A prestigious EU-grant will advance OncoImmunity’s machine-learning approach to develop personalized cancer immunotherapy.

The bioinformatics company OncoImmunity AS is empowering cancer immunotherapy with artificial intelligence. They use innovative software solutions to guide the discovery of neoantigen-based personalized immunotherapies and biomarkers. What does this really mean?

It means that the software they have developed helps to identify neoantigens, also known as immunogenic mutations, in a patient’s cancer cells. Cancer cells deceive the immune system by looking like healthy cells. But they still express cancer-specific markers, known as neoantigens. (See facts box for explanation.)

Enables personalized medicine
The interesting part about neoanitgens, is that every patient’s tumor expresses a unique combination. This enables truly personalized medicine to be applied, if the correct neoantigens are selected from the thousands of possible candidates in the genome of a tumor. Researchers using this technology can now solve this “needle in the haystack” challenge by analyzing a tumor genome to figure out the right cocktail of neoantigens, for each individual patient, and design a specific vaccine or cell therapy uniquely designed just for them.

Such personalzed immunotherapy can for instance boost the immune system’s response by making the immune system better able to recognize and target the patient’s unique cancer cells.

Faster bespoke treatment
OncoImmunity’s flagship software, the ImmuneProfiler™,is a unique machine learning solution that makes it easier to instantaneously see and accurately select which neoantigens will be responsive in each patient.

It thereby helps biotech companies design neoantigen-based personalized cancer vaccines and cell therapies and enables bespoke treatments to be developed faster. Additionally, the technology allows clinical researchers to select which patients will likely respond to the wide range of cancer immunotherapies currently under development in the field.

In that sense, the OncoImmunity-approach to cancer treatment is exactly in line with Oslo Cancer Cluster’s main goal: to speed up the development of new cancer treatments for the benefit of cancer patients.

Prestigious EU-grant
Horizon 2020’s SME Instrument is a grant that is tailored for small and medium sized enterprises (SMEs). It targets innovative businesses with international ambitions — such as OncoImmunity.

The SME Instrument has two application phases. Phase one awards the winning company 50 000 Euros based on an innovative project idea. Phase two is the actual implementation of the main project. In this phase, the applicant may receive between 1 and 2,5 million Euros.

Oncoimmunity won the phase one project last year. Then, the founders of the bioinformatics company were happy about the opportunity to refine and optimize their machine-learning framework. Their goal has always been to facilitate personalized cancer vaccine design.

Fantastic funding
Now, they have won a considerably larger grant of 2,2 Million Euros that they are going to use to fund a project titled Machine-learning Engine for the Design of personalized Vaccines in Cancer (MEDIVAC).

The SME Instrument grant provides OncoImmunity the opportunity to further customise their machine-learning framework, called the ImmuneProfiler™,for specific vaccine platforms, facilitating the design of safer and more efficacious personalised cancer vaccines.

— We applied for the SME instrument grant as it represents a fantastic funding vehicle for cutting edge, innovative projects with huge commercial potential. The call matched our ambition to position OncoImmunity as the leading supplier of neoantigen identification software in the personalised cancer vaccine market, says Dr. Richard Stratford, Chief Executive Officer and Co-founder of OncoImmunity.

— This opportunity will also help us establish the requisite quality assurance systems, certifications, and clinical validation with our partners, to get our software approved as a medical device in both the EU and US, says Dr. Trevor Clancy, Chief Scientific Officer and Co-founder of OncoImmunity.

SMEs can apply
The SME Instrument is looking for high growth- and highly innovative SMEs with global ambitions. They are developing innovative technologies that have the potential to disrupt the established value networks and existing markets.

Companies applying for the SME Instrument must meet the requirements set by the programme. Please see the SME Instrument website for more information in English or the SME Instrument webpage of Innovation Norway for more information in Norwegian.

Curious about which companies have received the SME Instrument so far? Have look at this database with an overview of all the grant receiving companies in Europe.

Want to know which Norwegian companies received grants from The European Unions research programme Horizon2020 in 2018? Read this article from Innovation Norway (in Norwegian).

Oslo Cancer Cluster  supports members via the EU Advisor Program in collaboration with Innovayt, making them aware of relevant EU- and H2020 funding opportunities and helping them to identify the right calls for their development phase and goals. Oslo Cancer Cluster also assists with partner searches using national and international networks and provides direct support during the grant writing and submission process.

 

Industrial precision against cancer 

Kongsberg Beam Technology wants to direct the precision technology from advanced industrial control systems to hit tumors in the human body. 

— We want to use Norwegian spearhead technology to combat cancer, Per Håvard Kleven said from the stage as he pitched the idea of his start-up at the DNB Nordic Healthcare Conference 2018.

He is the founder of the start-up company Kongsberg Beam Technology AS. As he wrote the patent application for the technology behind this start-up, he was far from the only one to explore this field. Nevertheless, the patent was granted earlier this year (2018). He was ahead of companies like Siemens and other giants.

— There is a lot of research going into radiation and all of it is focusing on increased precision, but no one is attacking the problem as fundamentally as we are.

Precision proton radiation
The method in question is proton radiation. This kind of radiation is directed towards a tumour and radiates far more precisely than x-ray radiation, the standard radiotherapy that hospitals currently use to treat cancer.

Proton radiation requires special machines. There are currently only 85 of these machines, known as proton  therapy synchrocyclotrones, in the world. Norway awaits its first proton synchrocyclotron in a couple of years. The existence of such a machine in Norway is a precondition for the business plan of Kongsberg Beam Technology.

This is one of the few proton therapy machines in use in the world today. It is the proton therapy synchrocyclotron in the Jacobson Building at the Mayo Clinic in Rochester, Minnesota, USA. Photo: Jonathunder/ Wikimedia Commons

The ambition of Kleven and his new board of directors is to let proton radiation follow the movements of the tumour, meaning the smallest movements of the patient as she breathes. This does not seem like much, but there is actually a lot of movement in for instance the lungs. And with vital organs closely linked to the lungs, such as the heart and the spine, it is extremely important to have a precise beam.

There is in deed a need for more precision in radiation therapy.

— The radiation that the hospitals use to treat cancer today is not precise. Healthy tissue is always damaged with radiation and this is a problem which we are attacking.

Norwegian spearhead technology
The system in question is to figure out exactly where the tumour is situated in the body, how it moves and how much radioactive energy it takes to radiate it properly.

He wants to take the principals and methods currently used in precision industries such as defence, space and oil- and gas, and apply these to radiation in cancer treatments. The aim is to obtain industrial precision to avoid damaging any healthy tissue.

Aims to develop a solution
The mechanical part of the system makes it possible to do online tracking of the cancer and synchronise the beam so that it always hits exactly on the cancer. This might not sound like it should be too difficult, but indeed it is.

— We cannot control a beam of particles with the agility and precision that is required today, but these functions will develop. We aim to develop them!

– In five years, when our project makes proton radiation reach its potential for industrial precision, my assumption is that proton radiation will take a much higher share of radio therapy in cancer treatment and that the number of proton centres will increase steeply.

According to Kleven, the testing will start soon, followed by prototyping and further testing and qualification. The goal is to have a working system by mid 2024. Kleven assumes that the future product can be installed as an add-on to exciting proton therapy synchrocyclotrones.

— Testing and remaining R&D will start as soon as the needed capital is in place, he said.

Needs more funding
The financing for the start-up so far is covered by Buskerud county, Innovation Norway, Oslofjordfondet and the Research Council of Norway. Kongsberg Beam Technology needs 93 million NOK initially, to test, develop and qualify the technology. 60 million of this sum should come from investors.

Kleven shows an estimate of a one billion NOK turn-over after a few years, in a profitable company with growth possibilities.

The new business is going to be established in Kongsberg in Norway, a town that is already well established as a hub for spin offs of the Norwegian defence industry. Kleven himself has a lifetime of experience from this sector, since he started to work in Kongsberg Weapons Factory (Kongsberg Våpenfabrikk) in 1975.

Surgery, squash and anaesthesia

Hannah (18) wants to become a doctor. After two days job shadowing doctors and nurses at the Norwegian Radium Hospital, she is even more certain that this is what she wants to do.

If your dream is to become a doctor, it may be a good idea to gain some insight into what the job actually involves before embarking on a long education. But job shadowing a doctor is usually only a possibility if you’re already a medical student.

Truls Ryder is a senior consultant and surgeon at the Norwegian Radium Hospital. He decided to do something about this, and over three days, one theme day that you can read more about here and two days of job shadowing, 18 pupils had the opportunity to experience surgery, morning staff meetings and patient consultations with the best cancer specialists and nurses in Norway.

Hannah Fiksdal is one of these pupils. And I, Elisabeth the journalist, shadowed her on the first of her two days at the Norwegian Radium Hospital. It was a day that neither of us will forget. A day that left Hannah with an even stronger desire to become a doctor.

‘I am incredibly grateful for the chance to shadow two different doctors, and to Truls Ryder for taking the initiative to allow pupils from Ullern to come to the Norwegian Radium Hospital. It gives us some idea of what may interests us before we apply for higher education in the spring. Having had a taste of two different aspects of medicine, I think that surgery and anaesthesiology were probably the things that I found most exciting.’

Hannah Fiksdal.

Hannah Fiksdal starts the day early at the hospital. Photo. Elisabeth Kirkeng Andersen

Tuesday 7 November

07:15 – the Norwegian Radium Hospital, basement level 2 – the corridor outside room AU 230
Sixteen excited pupils, 14 from the natural science and mathematics programme who will be shadowing doctors and two from the healthcare programme who will be shadowing nurses, are standing in a corridor two floors below the main entrance to the Norwegian Radium Hospital dressed in white hospital clothes.

Truls Ryder, senior consultant and prime mover behind the job shadowing scheme, is also here. He quickly reads out where each pupil will be spending the day, and sets of at a brisk pace with everyone in tow.

This is an indication of what is to come.

We go five floors up and then a couple of floors down via the back stairs. On the way, pupils peel off from the group to join other senior consultants and professors who they will be job shadowing today.

Hannah and Tristan are handed over to the anaesthetists at the anaesthesiology department. The department has nine senior consultants, one professor working 50% of a full-time position, and three specialist registrars.

07:34
The morning staff meeting has already started when Hannah and Tristan arrive. Eight doctors and nurses go through the list of patients who will need anaesthesia or pain relief today. Some will undergo surgery in the hospital’s central unit, and some require their services in other parts of the hospital, such as the radiotherapy department.

It is difficult to understand the discussions and information exchanged between the doctors and nurses. The jargon is technical, professional and precise. I wonder how much Hannah and Tristan understand? But it is clear that we have a full day ahead, and that many of the patients are seriously ill with cancer. Some are young, and some patients’ cancer has returned after treatment. Despite the difficult subject, the tone of the meeting is upbeat and friendly. It will remain so for the rest of the day.

08:00
Tristan and Hannah meet their mentors for the day. Tristan will join Senior Consultant Hege for a complicated operation that may take more than ten hours. The patient has a form of cancer that means that the surgeons have to go into the skeleton, among other things.

Hannah will be joining Senior Consultant Anne. Anne has several operations on her schedule today, and Hannah and I will be allowed to tag along and see how she works. Anne’s first patient is having an epidural and then a general anaesthetic. This is also a complicated operation.

Anne and Hege both tell us to be prepared that what we experience may make a strong impression on us and that it is natural to feel unwell. They both share stories about themselves and about medical students who have fainted both during and after visits to the operating theatre.

‘Let us know if you fell unwell,’ is their mantra, ‘and we will help you.’ I think back to the countless shifts I worked at nursing homes during my student days, and hope that they have prepared me for this. But what about young people of 18 and 19 who want to go on to work here?

08:07
Anne gives us green scrubs and a purple cap. We change in her office while she explains that her job can be compared to a pilot flying a plane. There is a lot to do when the operation starts until the patient is under anaesthesia, and then there is a calmer period of observation of the patient, often done by her colleagues, and then she goes back to full focus when the patient wakes up.

We get changed quickly.

8:10
Surgery starts early at the Norwegian Radium Hospital, and the patient arrives at the operating theatre at the same time as we do. Anne explains who Hannah and I are and why we are here. In addition to the patient, there are already five people working here.

Anne jokes and talks to the patient, who she has already met several times before. She explains that she will first be administering a local anaesthetic to the back before putting in an epidural, a form of pain relief given as an injection in the back. After that, a cannula will be inserted into a vein in the patient’s lower arm. When the patient is completely asleep, Anne will place a catheter in the neck that will be used to administer anaesthetics, pain relief, salts and anything else the body may need during an operation.

Anne involves Hannah in the work and explains what she is doing while she works, and she also explains to the patient.

‘It was also really nice to see how caring the doctors and nurses were and how they reassured the patients before surgery. They were very good at creating a pleasant atmosphere to make the patients feel safe despite the seriousness of the situation.’

Hannah Fiksdal.

08:41
Operating theatre 4 is a big, light room, and one of the long walls has big windows with a view of Mærradalsbekken stream and the surrounding forest. The river and the walking path meander side by side. But today, we can hardly see any of this through the darkness and fog.

Anne keeps an eye on the pulse and heart monitor that the patient is connected to, while the theatre nurse is preparing the instruments that the surgeons might need during the operation.

The patient is about to be put under full anaesthesia. Anne and her colleagues place a cannula in an artery in the patient’s lower arm/hand and a catheter in a vein in the neck. Anne is calm and talks to both the patient and Hannah. She explains to the patient that she will soon be asleep. She explains to Hannah what she is doing, and how you can tell the difference between a vein, which carries blood back to the heart: ‘It is darker in colour and pumps slower’ and an artery, which carries blood from the heart: ‘It is light in colour, full of oxygen, and has more force. If I had made a hole in an artery, the blood would have squirted out.’

Despite the number of people working in the operating theatre, the atmosphere is calm and pleasant.

Hannah pays close attention to Anne and asks questions while she is working. Anne is obviously impressed with the pupil: ‘Hannah, you are a tough cookie.’

09:10
The patient has been anaesthetised and is ready for surgery. At this stage, Anne and her colleagues’ responsibility is to ensure that the patient is okay during surgery.

09:40
The patient is in good hands in the operating theatre, so Anne goes to the recovery unit where the patients are taken to recover from the effects of surgery. Patients are closely monitored here. Many complications can arise following surgery, such as bleeding, breathing difficulties, a fall in blood pressure, pain and nausea.

Anne will set up a pain pump for the patient. This is a pump with morphine that Anne programs so that the patient can regulate how much pain relief she needs and wants in the days following the operation. We are allowed to use the staff’s break room while she is programming it. ‘Drink squash with sugar,’ she advises. We do as we are told, and talk a bit about what we have seen and experienced so far. Hannah is pleasantly surprised that she has been allowed into the operating theatre already, and at how open and welcoming everyone is.

‘There was some information about anaesthesia at the theme day yesterday, so I understand what is going on,’ says Hannah, and talks more about her wish to become a doctor.

Anne returns and takes the time to talk to Hannah about medical school and her many years working as an anaesthetist at Haukeland University Hospital. She took up her position at the Norwegian Radium Hospital a month ago, and there is still much that is unfamiliar.

10:01
We return to the operating theatre. There are suddenly a lot of people here, and several surgeons with different areas of specialisation discuss the surgery they are about to perform. It is a complex operation that requires cooperation.

After conferring for a while, the surgeons make a plan. Several of the Ullern pupils on job shadowing come by together with a gastrointestinal surgeon. One of the surgeons takes the time to explain the plan to Hannah and the others.

10:20
A theatre nurse goes through a checklist with the physician, surgeon and anaesthetist Anne. Everything is in order, and the operation can begin. Anne uses all her senses to check that the patient is still doing well.

Two surgeons cooperate on the operation. Hannah stands watching behind them. They talk about this and that while they are working, including the musical Book of Mormon. The actual operation is expected to take five hours. After working and discussing amongst themselves for a while, they ask for another surgeon to be called. They need what is called a ‘second opinion’, or another surgeon’s assessment.

There are suddenly a lot of people in the operating theatre, and several surgeons with different areas of specialisation discussing the case. Truls comes in with a couple of pupils who are shadowing him. Truls confers with his colleagues, and one of the surgeons explains that they are uncertain about the best way to proceed. When the surgeons opened the patient up, they found that the assumptions they had made from the outside were not correct. They have to rethink and make a new plan for the operation.

Anne lets us know that this is very unusual. There are rarely this many surgeons involved in an operation, and they do not often spend this much time discussing what to do. She suggests that we take a break and get something to eat. She has to work, though, both with more of today’s patients and planning for tomorrow, but she thinks that we should eat something.

‘Another thing that surprised me was the doctors’ willingness to show and tell me what they were doing and why. During the first day in particular I learnt a lot that I hope will be useful in my future studies. It was also very clear during the operations that good cooperation is incredibly important in order to achieve the best possible outcome for the patients. Everything from how the senior consultants’ discussed to find the best way to proceed during the first operation to how the two surgeons cooperated without needing to communicate much during the second one.’

Hannah Fiksdal.

11:07 Break room
Since we have green scrubs on, we have crispbread with cheese in one of the break rooms. Otherwise, we would have had to change, leave to eat and then change back afterwards. We also have more squash. With sugar. More pupils come in for a welcome break. Four intense hours have flown by. Two pupils have fainted and woken up again.

Ander Bayer from Oslo University Hospital’s communications department also joins us. He made this video about the job shadowing.

 

11:36 Operating theatre 2
Anne comes to get us. Hannah is going to go with her to another operation. Anne is to put another patient under anaesthesia. Again, Anne explains to the patient and theatre nurses who we are. This patient is also having an epidural in the back, and again, Anne alternates between speaking softly and reassuringly and explaining what she is doing to the patient and Hannah. Fourteen minutes after we entered the operating theatre, the patient is under. Two nurse anaesthetists help Anne by monitoring the patient. The theatre nurses wash the abdomen where the surgeons will open up the patient to remove tumours.

12:15 Operating theatre 4
Anne is needed in operating theatre 4 again, where three surgeons are operating on the first patient. They have now decided what to do.

12:23 Break
We get to take another break and have some squash with sugar, while Anne is preparing a pain pump for the second patient.

12:32
The second patient’s operation is under way. Two surgeons are standing face to face, working together. Anne gets a stool so that Hannah can stand by the patient’s head and watch the surgeons work inside the patient’s abdomen. They have made an incision that is held open by a large tool. There is a smell when the surgeon uses an electrosurgical knife to cut tissue and burn small blood vessels. The cancer they are removing is located around the vein and artery, the blood vessels running to and from the heart and legs. The surgeons show Hannah where they have to be careful. The cancer is removed, and they quickly suture the different layers of tissue before stapling the skin. The theatre nurses perform a routine equipment count. The operation is completed in 40 minutes.

The day in the operating theatre was at least as exciting as I imagined! I had not expected that they would allow us to get so close to the patients and really get a proper insight into what happens during an operation and also how the patients are anaesthetised.’

Hannah Fiksdal.

13:35
Anne returns to make sure that both the patient and Hannah are okay. Anne and her colleagues from the anaesthesiology department wake the patient up. The important thing now is for the patient to start breathing again. Everything goes as it should.

13:40
We accompany the patient to the recovery unit, where the patient will remain for a few hours. Anne’s work with this patient is now finished. We go back to her office to change out of the green sterile scrubs. Anne tells Hannah that she will probably doze off early after such a long and intense day. Anne’s shift will last until half past three, when other anaesthetists will take over for the evening shift. In the hall, Hannah thanks Anne for everything she has taught her and for taking care of her during the day.

14:00
As we leave the Norwegian Radium Hospital through the main entrance, we wonder how the first patient whose surgery we saw in the operating theatre is doing. And Hannah says that she is looking forward to another day of job shadowing tomorrow.

Epilogue
The evaluation results for the theme day and job shadowing were excellent. The pupils and teachers were highly satisfied, and it has already been decided that this will be made an annual event for pupils at Ullern upper secondary school who are considering a career in medicine.

‘Finally, I would like to say that it was very inspiring to see how committed Anne and Anna (Anna Winge-Main, who was Hannah’s mentor on the second day of job shadowing) was to their work and how much they loved their job. It was very clear that they are really dedicated to helping their patients. As Anne said, medical school can be hard and difficult, but once you start working as a doctor, nobody regrets their choice.’

Hannah Fiksdal.

READ MORE:

Days to partner up

Roche is looking for new partners in the innovative Norwegian life science scene. 

Roche is one of the largest pharmaceutical companies in the world with about 800 ongoing clinical trials. Within cancer research and development, this translates into about 500 clinical trials for many different types of cancer. Roche is a member in Oslo Cancer Cluster. 

Read more about Roche’s cancer research

As a part of Roche’s scouting for new innovative collaborations, the company arranged two partnering days in the beginning of December together with Oslo Cancer Cluster and the health cluster Norway Health Tech. Together, we welcomed start-ups, biotechs, academic researchers, clinicians, politicians, innovation agencies, students and other interested parties to a two day open meeting.

Partnering with companies 
The first day was at the at Oslo Cancer Cluster Innovation Park and the second day was at Oslo Science Park.

Growing life sciences in Norway is important to Oslo Cancer Cluster, and the larger pharmaceutical companies’ commitment to working with local stakeholders and local companies is an essential part of the innovative developments in this field.

Such collaborations have the potential to bring more investment to Norway and provide platforms for local companies to innovate, thrive and grow. 

— What we want to do is to strengthen the collaborations and to see even more companies emerge from the exciting research going on in academia in Norway, said Jutta Heix, Head of International Affairs at Oslo Cancer Cluster. 

Partnering with academia
Professor Johanna Olweus from the Institute for Cancer Research at Oslo University Hospital was one of the speakers. She also presented the Department of Immunology and K.G. Jebsen Center for Cancer Immunotherapy for a full auditorium at Oslo Cancer Cluster Innovation Park. 

Established back in 1954, the Institute for Cancer Research at Oslo University Hospital is certainly a well established institute and their Department of Immunology is currently involved in all the clinical trial phases.

— The scientists at the institute realise the importance of collaborating with the industry in order to get results out to the patients, Olweus said, and showed some examples of scientist-led innovations from the institute, including the Department of Cancer Immunology.  

In this story, you can read more about how science from Oslo University Hospital is turning into innovation that truly helps cancer patients.

The e-health meeting place

Starting next year, Oslo Cancer Cluster will co-power the conference E-health in Norway (EHiN).

– This is a natural continuation of the work we do in digitalisation, for a better understanding of cancer and better patient treatment, said Ketil Widerberg, General Manager of Oslo Cancer Cluster, at this year’s conference.

The Norwegian Ministry of Health and Care Services (HOD) and ICT Norway started a collaboration on creating a national meeting place for e-health. ICT Norway launched the first EHiN conference five years ago. Oslo Cancer Cluster is happy to announce that we are now one of the three stakeholders in this yearly conference, together with ICT Norway and Macsimum.

EHiN attracts a large audience from Norwegian government and business. The speaker in this picture is Christine Bergland, Director at the Norwegian Directorate of eHealth (NDE).

Norwegian e-health  
EHiN 2018 took place in Oslo Spektrum and was the biggest meeting place for actors in the public and private sector working with e-health in Norway. The conference had 150 speakers and 1300 participants. EHiN 2019 will be the 6th year of the conference.

What happened at EHiN 2018?

 — EHiN is an important meeting place for public and private actors, and for academia and business. This is a natural prolongation of the many meeting places Oslo Cancer Cluster is always working to establish and preserve, Ketil Widerberg says.

Digital technologies are part of what drives innovation to the maximum benefit of cancer patients. Widerberg is certain that e-health will change the way we understand and treat cancer in the future.

– E-health is part of the matrix for how we give the right medicine to the right patient at the right time, meaning precision medicine. One example of what we specifically do in this area, is a recent project we have been part of, called PERMIDES.

An e-health success story
From August 2016 until August 2018, Oslo Cancer Cluster together with five other European clusters in medicine and ICT, was managing a Horizon 2020 EU project called PERMIDES. It is a European e-health success story in bringing together biopharma and IT sectors.

D.B.R.K Gupta Udatha at the EHiN conference in 2018. Dr. Udatha was the project manager for PERMIDES at Oslo Cancer Cluster.

D.B.R.K Gupta Udatha is Director (Digital and EU) at Oslo Cancer Cluster. He has been instrumental in PERMIDES and explains why the project has had such a positive effect on the small and medium sized enterprises (SMEs) it has worked with. 

PERMIDES was a project to anchorage digital transformation across SMEs in biotechnology and pharmaceuticals. We aimed to see where the biopharma companies were lacking digital infrastructure and where the ICT companies could bring digital skills to make sure that the biopharma companies were up to date, Dr. Udatha said at this year’s EHiN.

The project created matchmaking opportunities between these two different categories of companies and was awarded EUR 4.8 million from the EU’s Horizon2020 programme. It addressed specific challenges for SMEs to go digital with a precision medicine product.

Read more bout the PERMIDES project here.

Let us cooperate on precise health technologies

International cooperation is key to fulfilling our vision of making cancer treatments more precise, and giving the patients new treatments more quickly.

This opinion piece is written by Ketil Widerberg, General Manager at Oslo Cancer Cluster. It was first published in the Norwegian newspaper Today’s Medicine, Dagens Medisin, 30 October 2018. 

The countries in Northern Europe have contributed to developing medical treatments that we today could not imagine living without. From the British discovery of antibiotics to the Danish development of a treatment for diabetes. Once again it is time for Northern European health innovation, this time in the field of health technology. What might the prime ministers from Northern Europe focus on when they meet in Oslo on 30 October to discuss health technology?

They might want to point out concrete and state-of-the-art initiatives from their respective countries. It could be Swedish biobanks, Finnish artificial intelligence, Danish health data, English genomics and Estonian health blockchain. These are exciting initiatives that make medicine more precise. This is particularly important when it comes to cancer because more precise treatments could save lives and limit the late effects resulting from imprecise treatment.

This opinion piece is written by Ketil Widerberg, General Manager at Oslo Cancer Cluster. It was first published in the Norwegian newspaper Today’s Medicine, Dagens Medisin, 30 October 2018.

At the same time, we see the contours of serious challenges arising with more precise medicine, such as each unit becoming more expensive. Smaller patient groups also mean that it is harder to find enough patients to understand the biological processes and the consequences of new medical treatments. As the prime ministers gather in Oslo to discuss health technology and plan the road ahead, it would not be amiss for them to look back in time and find inspiration from another technological development.

Precise through cooperation
In the 1990s, the search engine Yahoo helped us to quality-assure by categorising and being precise when we needed information on the internet. Yahoo thus contributed to the internet changing the world. However, the amount of data soon became enormous and complex, and a never-ending need for resources and experts arose. The traditional categorisation to ensure quality and structure the data became an impossible task.

This is very similar to what is happening in the health field today. We are constantly collecting more data and educating an increasing number of experts. With a few exceptions, every country is now collecting their data in their own registers and using a great deal of resources on assuring the quality of the data. The countries are rightfully proud of their initiatives. In Norway, we are proud of our biobanks and our health registers, such as the Cancer Registry of Norway. At the same time, we need to ask ourselves whether this national strategy really is the smartest way forward.

Let us go back to Yahoo. Towards the end of the 1990s, some engineers in California thought differently about the internet. How about using cooperation as a quality indicator? Instead of categorising, the links between the websites could ensure data quality. This is how Google was born, and we got precision, quality and insight into data that changed the world.

There are different challenges in the health field than on the internet. Data are more sensitive and the consequences for individuals can often be more dire. At the same time, health technology, in many ways, has reached the same point as the internet faced in the 1990s.  We do not have the quantity, the methods for analysis, or the quality to fully exploit the data to gather insight, or for treatment or innovation – yet.

From Yahoo to Google level
One way in which we could tackle the health technology challenges the data present us with is through international cooperation. It is about two things: to gather enough data, and to analyse the data to provide better and more precise treatment. The initiatives so far are promising, but they lack the potential to make the leap from Yahoo to Google.

The Northern European prime ministers can probably acknowledge this. The question is: what can they do? Should they encourage smart young engineers to analyse health data instead of developing the next app? Or should they change the way the hospitals buy technology?

A step in the right direction could be to look at what works best in the other countries. At the same time, we need to avoid new initiatives merely becoming a better horse-drawn carriage. Are there initiatives in existence that are scalable internationally so that we can bring health data up to the next level together? The answer is yes, but it requires visionary initiatives that have not been done anywhere else.

Common clinical studies
An area that the prime ministers will be able to highlight is a Northern European initiative for clinical studies. Together, the countries have a large number of patients, which gives researchers and doctors a better basis in their studies to understand more and provide better treatment. Such an initiative could also use health data from the national health services collected on a daily basis in several countries, known as real world data, instead of eventual clinical studies with patients over several years. This would be both quicker and much cheaper.

The prime ministers might also agree on cooperating on Northern European genetics. For 13 years, we collaborated on mapping our genes in the international  Human Genome Project. Now we need to get together to understand genes and treat the patients. With prioritised funding, genetics will soon be a part of the everyday clinical life in England. We can learn a lot from their experience.

Artificial intelligence
Lastly, the Northern European prime ministers may wish to collaborate on artificial intelligence in the health field. Today, cancer treatment, for instance, often only works on three out of ten patients. Artificial intelligence will change how we understand diseases such as cancer and how we treat the patients. The experiences from Finland of introducing artificial intelligence will help other countries to understand where the barriers are and where help might be needed first.

Oslo Cancer Cluster’s vision is to make cancer treatment more precise and provide new treatments more quickly to the patients. We see that international cooperation is key to obtaining this goal. As a result, we could also discover diseases more quickly and reduce the costs of the national health services. We hope the Northern European prime ministers will delve into these issues when they meet to discuss the health technologies of the future here with us.

By Ketil Widerberg, General Manager at Oslo Cancer Cluster.

– An idea needs to attract investors

Meet Thomas Andersson, our new Senior Advisor Business Development. How could he be of help to your startup company? 

— The most important thing I do is to get the startup companies rolling.

Thomas Andersson, the new Senior Advisor for Business Development at Oslo Cancer Cluster and Oslo Cancer Cluster Incubator, looks dead serious as he makes this statement, but immediately after he lets out a smile and elaborates:

— A company needs to be investible. An idea needs to attract investors.

A lifetime of experience
Thomas holds a Ph.D. in Physical Chemistry from Lund University in Sweden and has more than 30 years of experience from establishing, operating and funding start-ups in the life science field. He has a long background in business development in health tech startups, all the way back to the early 1980s.

— I’m that old! I went straight from my Ph.D. in biophysics into the problem-solving of business development.

In his career he has also taken on issues with patents and sales and he even bought a company that produced monoclonal antibodies with some friends and remodelled and sold it. 

— What did you learn from this journey? 

— I learned quite a lot, including the production business and the cell cultivation biotech business from the floor. I also learned how to lay out the production manufacturing facility.

See it like an investor
Thomas Andersson knows the biotech startup-scene from the investors’ point of view. He started to work at the tech transfer office of Karolinska Institutet in Sweden. It was called Karolinska Innovations back then, now it is known as KI Innovations.

— We raised a lot of money there, formed 45 companies as a group and we had a fantastic time! 

After 8 years he was recruited to Lund and worked in Lund University Bio Science and tried to vacuum clean the whole university for life science innovation.

— And we did find a lot! In the end there were about 20 investment proposals and those ended up in 9 investments, of which we turned down 5 or 6. Two of them are now at the stock market. 

In total, Thomas Andersson has been involved in starting about 20 companies, of which 5 survived and are now on the stock market.

Normally, it is said that only 1 in 30 biotech startups make it. 

 

Thomas Andersson, Senior Advisor Business Development. Photo: Oslo Cancer Cluster

Here for you
— How did you end up here at Oslo Cancer Cluster?  

— I have had my eyes on Oslo Cancer Cluster for a while. I have liked the ideas that the cluster stands for. And I wanted to do something new in the end of my career. That is why I am here as a senior advisor now. I like it here! I am working on very interesting projects and ideas.

Our new Senior Advisor Business Development is present in Oslo Cancer Cluster Incubator nearly every week although he still lives in Lund, Sweden, on a farm in the woods where he can be practical and hands-on with hardwood and fly fishing.

— My door is open to people in the cluster and incubator with projects and ideas. I have a network that can help them and I have the experience of how investors, scientists and other actors can value a company. And being a Swede in the Norwegian system; I am basically here also to encourage you to think differently.

 

Interested in more funding opportunities for your company?

Check out our Access to Capital-page.