Arctic Pharma, a member of Oslo Cancer Cluster, gave students a lecture on the chemistry behind cancer treatments.

Chemistry with mutual benefits

Arctic Pharma, a member of Oslo Cancer Cluster, gave students a lecture on the chemistry behind cancer treatments.

Students were taught about the chemistry behind developing cancer treatments in the Oslo Cancer Cluster Incubator.

In February, forty chemistry students were given a memorable specialisation day on the subject of the chemistry behind developing cancer treatments. The company Arctic Pharma in Oslo Cancer Cluster Incubator invited them to the lab and gave a long and detailed lecture on the chemistry behind the medication they are developing to treat cancer.

Karl J. Bonney, who is a researcher in the company, started the day with an interactive lecture in English about the chemistry of the substance Arctic Pharma hopes will be effective against cancer.

Bonney emphasised to the students that the company is in the early stages of the development, and that it will take approximately three to four years before they are potentially able to start clinical trials on humans to see whether the substance is effective.

The pupils who are studying chemistry as their specialisation in the last year of upper secondary school were obviously fascinated by what they heard. They asked many important questions both to the lecturer, Bonney, and the chemistry teacher, Karsten, who participated to explain the most difficult terms in Norwegian.

 

Sugar-hungry cancer cells

Arctic Pharma is exploiting a well-known biological fact regarding cancer cells, namely that they like sugar, which means they have a sweet tooth. This is called the Warburg effect, and, so far, nobody has used it in the treatment of cancer. Since this is such a characteristic aspect of cancer cells, it would make sense to think that this could be a viable starting point for treatment.

Arctic Pharma is one of the smaller companies in Oslo Cancer Cluster Incubator and is co-located with Ullern Upper Secondary School. Bonney has been permitted to use the school’s chemistry lab to test the chemical substance being developed to attack the Warburg effect.

The chemistry day at the company was organised to return the favour and to inspire the young chemistry students to keep studying chemistry at a university or university college.

 

 

Sign up to OCC newsletter

Transporting patients

Ullern student Jørgen on his work placement in the hospital.

Student Jørgen Amdim got to experience life as an orderly on his one-week placement at the Norwegian Radium Hospital.

 

Transporting patients in Norway’s biggest cancer hospital is strenuous both physically and psychologically. “But it’s really good,” said Jørgen Amdim, who is studying the program Healthcare, childhood and youth development at Ullern Upper Secondary School. His one-week placement was at the Transport Section at the Norwegian Radium Hospital. The work experience certainly gave him a taste for more.

Jørgen has previously worked in a nursing home, but he found the work a little tedious. He enjoyed being an orderly though and asked the school if there were any available placements.

An orderly is an attendant in a hospital who is responsible for, among other things, transporting patients, medical equipment and other essential materials. Jørgen spent one week as an orderly at the Radium Hospital and he loved it. He enjoyed it so much that he wants to work there again during the summer of 2019.

Knut Arve Kristiansen, the Head of the Transport Section, has worked at the Radium Hospital for 30 years and praised Jørgen:

“He was a perfect addition to our team, and we are very happy with him.”

 

80 km per week

Jørgen enjoys manual labour, which is great if you want to become an orderly. Wheeling around heavy medical equipment or patients in beds and wheel chairs is hard work. Knut Arve explained:

”As orderlies, we’re constantly on the go, and we could end up walking around 80 kilometres on hard floors during a week of work.

“It can be strenuous for the body, so we have to regularly do strength exercises to keep fit,” Knut Arve continued.

Knut Arve only had positive things to say about Jørgen and he hopes that Jørgen will want to return to the Transport Section for a summer job as an orderly.

“Jørgen is a social person and very well liked. This is important for patients when they are transported between examinations and the rooms they are staying in,” said Knut Arve.

Jørgen praises the work environment and especially the warm welcome he received from the other staff.

Jørgen has constantly been accompanied by a colleague from the section during his stay, because he is not allowed to do much on his own when on a placement. If he returns for a summer job, things will be different. Then he will have to work more independently and take responsibility if an emergency should occur while he is transporting a patient.

The orderlies are also responsible for transporting food and medication. To newcomers, the Radium Hospital can appear to be a huge labyrinth, especially outside the wards. The hospital is also currently being renovated, because a new hospital is being built. A sense of direction is therefore essential for anyone finding their way through the building.

 

A future in health

Jørgen does not necessarily want to become an orderly, but sees himself working in healthcare:

“I would really like to work in an emergency room – receiving ill and injured people at the hospital when they arrive in an ambulance. But I think working as an orderly is very exciting too, so I don’t want to exclude it as an option.”

Knut Arve says that a trade certificate is required to work as an orderly and that they currently offer placements for several apprentices in the section. Students need to study Healthcare, childhood and youth development during upper secondary school and then finish a two-year apprenticeship to obtain their trade certificate as an orderly.

”Workdays here are very varied and you meet many different people. It is really fun to talk to people and no two days are the same. I have really enjoyed it.” said Jørgen.

 

Attracting and developing the life science talents of the future is an essential goal for Oslo Cancer Cluster. One way to do that is to take students outside the traditional classroom setting and invite them to work placements and educational lectures. These collaborations between industry and academia give the students a unique insight into the specialist skills needed to become tomorrow’s researchers and entrepreneurs.

  • Find out more about Oslo Cancer Cluster’s school collaboration with Ullern Upper Secondary School.

 

Sign up to OCC newsletter

 

The pupils Kalina Topalova Casadiego, Ida Hustad Andresen,Andreas Bernhus and Dina Düring had the opportunity to experiment with fruit flies at the Institute for Cancer Research in Oslo.

Operation fruit flies

Three students experimenting with fruit flies in a lab.

Fruit flies are not only annoying little insects that appear when bananas are overripe. They are also popular research tools for cancer researchers.

The four pupils Kalina Topalova Casadiego, Ida Hustad Andresen, Andreas Bernhus and Dina Düring got to experience how cancer researchers look at fruit flies during their work placement in January.

“Let’s turn on the gas, and then I’ll put some fruit flies on the pad under your microscope.” Speaking is cancer researcher Lene Malrød who, together with her colleague Nina Marie Pedersen, is responsible for four pupils from Ullern Secondary School on work placements.

“Gosh! They’re moving,” proclaims one of the pupils.

But not for long. Soon, all the fruit flies are anaesthetised and, eventually, dead; then the pupils are tasked with surgically removing the ovaries of the female flies. It is easier said than done, even with the help of microscopes to enhance the tiny flies. Especially when the operating tools are two tweezers.

Fruit flies are kept in two test tubes

The fruit flies are kept in test tubes.

 

An exciting placement

It is the third day of the pupils’ work placement at the Institute for Cancer Research, located next to the school. For four days at the end of January, they have learnt about cancer research and which methods researchers use in their daily work.

“The work placement is not like we imagined,” says Kalina and Ida.

“There’s a lot more manual work than I would have thought, and then you realise how important research is through what we do,” says Ida.

She is the only one who is specialising in biology in combination with with other science subjects, and she finds this very useful when working in the lab together with researchers. The other three have had to catch up on the reading, but they all agree that it is very exciting.

“Yesterday, we learnt a lot about CRISPR, which is a new method for cutting and splicing genes. Media gives you the impression that this is a highly precise tool, but the researchers here say that a lot can go wrong, and that it’s not at all as precise as you might think,” says Ida.

A student looks at fruit flies under a microscope

The students look at the fruit flies under a microscope.

 

From Western Blot to flies

A total of twelve pupils were picked out for this work placement. They have been chosen based on motivation and grades, and they all have a wish to study something related to medicine or science after they finish upper secondary school.

The twelve students are divided into three groups with completely different activities and get to learn a number of different research methods. The group consisting of Ida, Kalina, Andreas, and Dina, for instance, is the only group which will have a go in the fly lab.

“Am I really supposed to remove the ovaries? I don’t see how,” one of the pupils say, equally discouraged and excited.

Andreas, on the other hand, is in complete control. First, he has separated the males and the females with a paint brush. He has then used the tweezers to remove the heads from the females, punctured the bottom to remove the intestines, and finally found the ovaries in the abdomen.

Lene gathers all the different body parts for the pupils to look at through a different microscope. These fruit flies are in fact genetically manipulated to glow in the dark – they are fluorescent.

If you are wondering why researchers use fruit flies as part of their research, you can read more about it in this article from Forskning.no (the article is written in Norwegian).

“It is so much fun to be here, and we are really lucky to get this opportunity,” says Dina on her way from the fly lab to another lab to carry out another experiment.

 

The pupils on the work placement have uploaded many nice photos and videos on Ullern Secondary School’s Instagram account – visit their account to see more from the placement.

All photos: Fullscreen Visuals

Top presentations from Cancer Crosslinks 2019

Audience at Cancer Crosslinks 2019

See them again or for the first time: videos from the Cancer Crosslinks 2019 presentations.

Cancer Crosslinks is Oslo Cancer Cluster’s annual, open conference for the Norwegian oncology community. It offers a full-day educational program featuring distinguished international and national experts presenting recent advances in precision oncology and cancer immunotherapy.

More than 300 participants joined Cancer Crosslinks on 17 January 2019 and enjoyed excellent talks and discussions presented by leading international oncologists and researchers and their Norwegian colleagues.

 

The speakers’ top topics

The speakers discussed new insights into sensitivity and resistance and features of the tumour microenvironment critical for the clinical course. They also discussed emerging tissue agnostic biomarkers, where «tissue agnostic” refers to the ability to develop therapies based upon biomarkers or other molecular targets to treat a disease. A biomarker is a measurable indicator of a biological state or condition.

Other topics were learnings from cancer molecular evolution studies, and how big data approaches are used to improve patient care. Together with an engaged audience, the presenters were really connecting the dots for improved patient care in precision oncology.


Professor Naiyer Rizvi
, Director of thoracic oncology and of immunotherapeutics for the division of haematology and oncology at Columbia University Medical Center, New York, gave the opening keynote in the form of a video presentation. He is an internationally recognized leader in the treatment of lung cancer and immunotherapy drug development.

In his presentation, titled: “Sensitivity and resistance to immuno-oncology: Biological insights and their translation into precision treatment”, Prof. Rizvi also addressed the question “What happens when the doctors expect the patient to respond to immunotherapy, but then the patient does not?”

WATCH PROF. RIZVI

Professor Rizvi

 

Dr. Aaron Goodman, MD, is a haematologist and medical oncologist specialized in treating a variety of blood cancers. He holds a position as Assistant Professor of Medicine at the Moores Cancer Center at UC San Diego Health in La Jolla, California.

During his talk, Dr. Goodman presented tumour mutational burden and other emerging tissue agnostic biomarkers for response to cancer immunotherapy and how to implement these into the clinic. He also spoke about his experience from the Rare Tumour Clinic in San Diego, where they perform a comprehensive molecular profiling for about 22-25% of cancer patients with rare tumours. The goal is to identify a matching therapy for each patient.

After his presentation, Dr. Goodman commented to Oslo Cancer Cluster:

“We started by doing data collections and help patients and learn at the same time. It is a benefit that we at least have the patient’s data and experience with that patient so that we can go forward and help the next patient.” Aaron Goodman

WATCH DR. GOODMAN

Dr Goodman

 

Dr. Randy F. Sweis is an Assistant Professor in the haematology/oncology section at the University of Chicago. He works with cancer immunology, developmental therapeutics and biomarkers, with a clinical interest in phase 1 clinical trials and genitourinary malignancies. His laboratory research involves the identification and targeting of tumour-intrinsic immunotherapy resistance pathways.

During Cancer Crosslinks, Dr. Sweis presented his work on immunophenotypes: “The T cell-inflamed tumour microenvironment as a biomarker and its clinical implications.”

WATCH DR. SWEIS

Dr. Sweis

 

Dr. Marco Gerlinger is a clinician scientist at the Center for Evolution and Cancer at the Institute of Cancer Research in London and a consultant Medical Oncologist in the GI Cancer Unit at Royal Marsden Hospital. He develops novel techniques to detect and track intra-tumour heterogeneity in solid tumours to define evolutionary plasticity and common evolutionary trajectories in cancers. Cancer cell plasticity is the ability of cancer cells to change their physiological characteristics.

Dr. Gerlinger shared the latest insights into cancer evolution and discussed the limits of predictability in precision cancer medicine. How can clinicians and researchers exploit important data on tumour development?

During his visit in Oslo, Dr. Gerlinger commented: “We have had fantastic discussions with an audience that is really well informed and brings up the challenges we are facing and the research we are doing.”

“This is the first time I have given a talk in Norway and obviously there is a lot going on here. I am already thinking about some collaborations, because there are some interesting advantages here through big tumour banks and cancer registries.” Dr. Marco Gerlinger

WATCH DR. GERLINGER

Dr Gerlinger

 

 

Professor Dr. med. Lars Bullinger is Professor of Hematology and Oncology and Medical Director of the Department of Hematology, Oncology and Tumor Immunology at Charité University Medicine Berlin.

He is a partner in the Innovative Medicines Initiative project HARMONY (Healthcare alliance for resourceful medicines offensive against neoplasms in haematology) aiming to use big data to deliver information that will help to improve the care of patients with haematologic cancers.

In his keynote speech he presented the “best of hematology from 2018” to the Cancer Crosslinks audience. He also addressed emerging therapeutic opportunities and the impact of big data for precision treatment in haematology.

WATCH PROF. DR. MED. LARS BULLINGER

Lars Bullinger

 

James Peach is the Precision Medicine Lead at UK Medicines Discovery Catapult, Alderly Park, UK. Prior to this role, he was the Managing Director at the main programme for Genomics England from 2013 to 2017. He presented his perspectives on the implementation of precision medicine in the UK and discussed the status, lessons learned and the way forward.

WATCH JAMES PEACH

James Peach


The expert panel
You can read more about how the Norwegian expert panel reacted to James Peach’s presentation and the state of precision medicine in Norway in the article below, also from Cancer Crosslinks 2019. The article contains a video of the panel debate.

Getting genomics into healthcare: look to the UK