NLSInvest & NLSDays: Investors’ Advice to Life Science Start-ups

Some of the leading Nordic investors offer their advice to life science start-ups regarding Nordic Life Science Days 2020 (NLSDays, 9-10 September).

NLSDays 2020 has many new things in store, including the launch of the first-ever Nordic Life Science Investment Day (NLSInvest).

NLSInvest is a new pre-event (8 September) to the annual NLSDays conference. This is an opportunity for start-up companies – ‘Rising Stars’ in our life science community – to pitch to a range of national and international investors, including pharmaceutical venture arms.

“I spent months gathering feedback from investors and companies across our ecosystem, and one thing has been consistently clear: investors want to meet start-ups at earlier stages, while these companies often struggle to afford large partnering meetings. NLSInvest was created to bridge that gap: to give investors and ‘Rising Stars’ an intimate pre-event, while offering small companies the opportunity to stay for the full NLSDays at no cost,” said Chelsea Ranger, NLSDays Program Director & NLSInvest Program Committee Chair.

We spoke with two investors from Industrifonden and Hadean Ventures to find out what start-ups should focus on when preparing to present their companies to investors:

What are you looking for when investing in life science ‘Rising Stars’?

“We invest broadly in the life science space and we have a particular focus on the Nordic region. We are looking for start-ups that develop products with high potential, both from a market and medical impact perspective. We also look for a strong team with high ambitions,” said Ingrid Teigland Akay, Managing Partner, Hadean Ventures.

“In general, I would say that there are three components: assets-plan, financing, and management. The company should have a protected asset with a plan that can provide sufficient return on investment, a trustworthy and reliable way to finance the plan, and a management team that can do it. Quality of data is of course also a key component. We need to believe that the data we invest in are true and that they belong to the company,” said Jonas Brambeck, Investment Director, Industrifonden.

What are some of the most exciting developments in Nordic life sciences?

“The life science ecosystem is maturing and, increasingly, we see start-ups with world-class science attracting both international capital and talent. We are on a very good path,” said Teigland Akay.

“When it comes to certain areas, we like therapeutics, oncology, rare diseases, and digital health, but we could also consider opportunistic cases. We also want to be actively involved with Board participation,” said Brambeck.

Why would you encourage Nordic life science companies to join NLSDays?

“NLSDays is the largest life science conference in the Nordics and a must-attend event for everyone who wants to understand the dynamics in the Nordics and meet high quality start-ups. I highly recommend it,” said Teigland Akay.

“NLSDays is the glue that binds our ecosystem. It bridges our countries, sectors, therapeutic and scientific areas, large and small companies into one place and frame-of-mind: learning, networking, and growing business ideas. It is a large industry event, yet an intimate and welcoming setting in which the Nordics collaborate to share our best,” said Ranger.

Do you believe you are a ‘Rising Star’ in the Nordic life science community – and are you looking to meet relevant investors?

Then apply now to be one of the 60+ selected companies to pitches investors during NLSInvest!

For more information, please contact Chelsea Ranger, NLSDays Program Director & NLSInvest Program Committee Chair.

FAQs

What is the different between NLSDays and NLSInvest?

NLSDays is the largest partnering and investor conference for the Nordic life science community. Last year, over 1 300 delegates attended NLSDays from over 40 countries and participated in over 3 000 partnering meetings.

Register now for NLSDays with Spring rates until 31 May 2020!

NLSInvest will launch on 8 September as a new pre-event to the annual NLSDays conference. Over 60 ‘Rising Stars’ within the Nordic life science community will be selected from a pool of applications and invited to pitch before a range of relevant, global investors.

NLSInvest is Open for Applications until 31 May 2020!

What are the selection criteria for companies wishing to apply to NLSInvest?

Please view this PDF with information about the selection criteria.

What happens if my NLSInvest application is selected?

You will receive a confirmation email from the selection committee and a complimentary registration code for NLSDays 2020. Practicalities related to your company presentation will be confirmed later by the organizers.

What if my application is not selected?

You’ll receive a notification email from the selection committee and a discount code for NLSDays 2020 registration.

How many / who attended NLSDays in 2019?

Over 1 300 delegates attended NLSDays 2019 from over 40 countries and participated in over 3 000 partnering meetings. Read more about who attended the conference.

Have any 2020 names been released for NLSInvest or NLSDays?

Read more in the NLSDays 2020 Program.

View the speakers at NLSDays 2020.

What happens if the conference has to be delayed due to COVID-19?

The same venue in Malmö is already booked for April 2021 so, in the event of delay, you will be able to choose between a full refund or 2021 participation.

NLS Invest

New member: Ledidi

Image of Oslo Cancer Cluster Innovation Park

In this article series, we will introduce the new members that have joined our oncology ecosystem in the last six months. Follow us for a new article next week!

One of the latest additions to our cluster organisation is Ledidi, a Norwegian technology start-up that wants to revolutionize how data is processed in clinical research.

Ledidi was founded in 2016 by three software engineers and two academic clinicians in cancer research. The company has since then developed a software solution that will help hospital personnel and medical researchers to sort, organise and analyse real-time data.

We talked to Jakob Markussen, VP Business Development and Sales at Ledidi, to learn more about how they are changing the field of cancer and why they wanted to belong to Oslo Cancer Cluster.

Could you briefly describe Ledidi and the role it is taking in cancer?

“Ledidi AS has developed and is marketing Prjcts, which is an end-to-end software solution designed for clinical research. Ledidi was founded in 2016 by three software engineers and two academic clinicians with long track-record within cancer research, cellular immunology and cancer surgery. Prjcts is a cloud-based solution that integrates data registry with statistical analyses and table and graph production in one package with a user-friendly interface. Pjrcts is an ideal cloud solution for all kinds of collaborative research projects from small internal quality registries to multicenter international studies. By integrating the complete workflow, Prjcts provide a platform that enables all project members to take part in the data analysis and presentation, and not only data acquisition,” said Markussen.

Why did Ledidi join Oslo Cancer Cluster?

“Oslo Cancer Cluster represents a unique partner for an exchange of expertise, partnership and networking. The spectrum of companies, institutions and organizations that Oslo Cancer Cluster brings together gives Ledidi a valuable opportunity to contribute to cancer research and stimulate research collaborations,” said Markussen.

 

Sign up to our monthly newsletter

From left to right: Peder, Henrik, Isha and Christofer are very happy with the placement at the research group Experimental Cancer Therapy. Photo: Elisabeth Kirkeng Andersen

Advanced microscopy on the timetable

The Ullern students visited the Core Facility for Advanced Light Microscopy at Oslo University Hospital.

This article was first published in Norwegian on our School Collaboration website.

How can we learn more about cancer cells by using advanced microscopes?

A microscope is an important tool for scientists in many different branches of research. In February, four first-year students from the Researcher programme at Ullern Upper Secondary School got to test multiple different microscopes at the Core Facility for Advanced Light Microscopy, The Gaustad node, at Rikshospitalet (Oslo University Hospital).

Isha Mohal, Peder Nerland Hellesylt, Christofer Naranjo Woxholt and Henrik Eidsaae Corneliussen are sitting in a small, rectangular room, which belongs to the research group Experimental Cancer Therapy at Oslo University Hospital.

“If you sit next to me, you can see better what I am doing,” says Emma Lång to the students.

Emma Lång is a researcher at the research group Experimental Cancer Therapy. She explains to Henrik and Isha how the advanced microscope, connected to the computer behind her, can record videos of living cells. Photo: Elisabeth Kirkeng Andersen

Emma Lång is a researcher in the research group Experimental Cancer Therapy. She explains to Henrik and Isha how the advanced microscope, connected to the computer behind her, can record videos of living cells. Photo: Elisabeth Kirkeng Andersen

It is the second day of the work placement for the Ullern students. Lång will show them how she is setting up a very special microscope with the somewhat cryptical name “ImageXpress Micro”.

The microscope is so special that it is the only one in the entire Oslo region and Eastern Norway. The unique thing about the microscope is that it creates videos of thousands of living cells over a long time period. This enables the researchers to understand more about how the cells move.

This is important knowledge in the research on cancer and wound healing, which this research group is working on.

The students sit down beside Lång and follow what she is doing closely. The microscope is entirely automatic, so all the settings are done on a computer. Later the same day, the students will use the microscope themselves to record videos of cells that they have been working on from the day before.

Learning from practical work

This is the first work placement for the students from the Research programme – and they are really enjoying it.

“It is fun to see what the researchers are doing and to try it out ourselves in practice,” says Peder.

“We have done some work with pipettes and worked in the laboratory at school, so we are already familiar with some of the practical handiwork. It is fun to try it out in a real research setting,” says Isha.

She likes that the placement gives some insight into what a career in research and cellular biology can be like.

“I am more interested to work in cellular biology after this placement, but I haven’t decided anything yet. I think we are learning things in an exciting way. It is practical learning and not as theoretical as it is usually in school,” says Peder.

“I absolutely see this as an opportunity to become a researcher. It is great to have so much science subjects as we have on the Researcher programme,” says Henrik and Isha agrees.

“I am very interested in the natural sciences. We have a lot of theory in school and it is fun to come out into the hospital and into companies to see how researchers work – and to try it out ourselves,” says Isha.

Christofer also thinks it is interesting, but he is more interested in data and other general subjects.

“That’s great, Christofer,” Lång says. “Research needs more people with good data knowledge. Do you see the computer over there? It costs NOK 100 000 and it will be used to develop machine learning and a technique called ‘deep learning’ on the data produced from our microscopes. Maybe in a few years time, computers will be analysing the microscope images and videos that we are recording now.”

Images of cells

Yesterday, Isha, Peder, Christofer and Henrik worked on cells in the laboratory. They learned a technique to fixate cells. Then, they coloured the cells with antibodies that turn blue when they bind to the core of the cell and with a protein called actin that turns green. Actin performs several functions in the cell, it is both inside the cell structure and functions as threads of communication between the cells.

Stig Ove Bøe leads the research group was visited by the four students from the Research programme at Ullern Upper Secondary School for two days. Here, he is preparing the images of skin cells that the students worked on the day before. Photo: Elisabeth Kirkeng Andersen

Stig Ove Bøe leads the research group that was visited by the four students from the Research programme at Ullern Upper Secondary School for two days. Here, he is preparing the images of skin cells that the students worked on the day before. Photo: Elisabeth Kirkeng Andersen

Now, the students are looking at the results uploaded to a computer in an advanced image editing software program that can visualise the cells as two- or three-dimensional.

“These are the skin cells you coloured yesterday. Can you see that the cells make up one close network? The reason for this is that it is skin and it is supposed to be impenetrable. Can you also see that the single cells act differently at the edge than closer inside? It is our job to explain why and how,” Bøe explains to the students.

The students look and nod with interest.

After the placement, researchers at Rikshospitalet (Oslo University Hospital) have worked more on the images and videos that the students created.

These have been delivered to the students and will be used when they make a presentation of the placement and everything they learned to the rest of the students at the Research programme.

You can see the cell image below.

A three-dimensional image of the skin cells that the students have coloured. Photo: Emma Lång

A three-dimensional image of the skin cells that the students have coloured. Photo: Emma Lång

What is cell migration?

The research group “Experimental Cancer Therapy” led by Dr Stig Ove Bøe at Rikshospitalet are researching how cells move, which is called cell migration in scientific terms.

Cell migration plays a central role in many of the body’s physiological functions, such as the immune system and wound healing. Cell migration is also essential for cancer, since cancer cells can spread from the location of the tumour to other organs of the body.

Cells use different mechanisms to migrate. They can move as single cells or they can move collectively. Thousands of cells can, for example, cooperate so they can move in the same direction.

The research group uses many different microscopy-based methods to research cell migration. They are also developing new video methods to study living cells in microscopes.

The research group is also responsibly for the daily running of the Core Facility for Advanced Light Microscopy at Oslo University Hospital. The facility gives other research groups in the Oslo region access to and guidance of the use of advanced microscopy equipment.

Sign up to our monthly newsletter

Sune Justesen and Stephan Thorgrimsen from Immunitrack

Cancer vaccine technology to fight COVID-19

Sune Justesen and Stephan Thorgrimsen from Immunitrack

Our member Immunitrack has joined forces with Intavis on a project that may help the development of a Covid-19 vaccine.

The two companies are attempting to identify the viral proteins that will stimulate an immune response against the coronavirus implicated in the current outbreak, namely Covid-19.

Specifically, Immunitrack and Intavis aim to identify the viral epitopes that should be included in a vaccine. Viral epitopes are (usually) parts of viral proteins that are recognised by the host’s (i.e. human in this case) immune system as a threat. Once the epitopes are ‘seen’, an immune response is then triggered in an attempt to clear the virus. Some epitopes trigger better immune responses than others.

To elaborate on the above: when a virus infects human cells, epitopes from the virus are bound to certain receptors that exist on the surfaces of human cells. These receptors are called MHCI.

MHC (Major Histocompatibility Complex) is a collection of genes that play a central role in recognising infectious agents (for example viruses) and triggering an appropriate immune response. These molecules exist on the surfaces of all living cells. MHC Class I (MHC I) molecules can specifically recognise viruses.

Immunitrack develops cancer vaccines by identifying which epitopes will stimulate an antibody-driven immune response and which epitopes will stimulate a cellular response.

The challenging task is to identify the correct epitopes i.e. the epitopes that will evoke an efficient immune response, against Covid-19 in this case. There are some software epitope prediction tools available, but most of these only work on Caucasian populations and perform less well on Asian populations. This is because the genes that determine MHC activity differ between populations.

Together with researchers at the University of Copenhagen, Immunitrack performed a computer simulation with ten of the most common MHC genetic variations (or alleles) in the Asian population. They could then identify 100 Covid-19 epitopes that might be recognised by these Asian MHC variants.

Immunitrack has developed a technology called NeoScreen ® that is used in cancer vaccine development. Using NeoScreen ®, Immunitrack was able to carry out lab studies to assess whether COVID-19 epitopes predicted to bind MHC could actually form a complex with these molecules and likely stimulate an immune response.

Immunitrack hopes this data will help vaccine developers determine which coronavirus epitopes will trigger an effective immune response against Covid-19. These epitopes can then be included in a potential Covid-19 vaccine to help control the spread of or eradicate the disease.

Several other healthcare organisations, including pharmaceutical and biotech companies, across Europe have also joined the race to develop a vaccine against the coronavirus. All of them are still at a pre-clinical stage. Read this news round-up from Labiotech.eu to see which other companies are involved. The first corona clinical vaccine trial has now begun in the US, but even in the best-case scenario the vaccine will not be available to the wider public for at least one year.

 

Sign up to our monthly newsletter