Meet our new members

Oslo Cancer Cluster proudly presents the new members that have joined our organisation during the second quarter of 2019.

The new members represent a valuable addition to our non-profit member organisation, which encompasses the whole oncology value chain. By being a part of Oslo Cancer Cluster, our members are connected to a global network with many relevant key players in the cancer research field. Our members contribute to this unique ecosystem and ensure the development of innovative cancer treatments to improve patients’ lives.

 

theradex logo

 

Theradex Oncology

Theradex Oncology provides global clinical development services exclusively to companies developing new cancer treatments. The company has a strong emphasis on early drug development. It provides regulatory and medical support for companies taking cancer treatments into clinical development in the US and Europe.

Theradex Oncology staff has participated in educational events at Oslo Cancer Cluster for a number of years. This is how they became familiar with the cluster.

“Oslo Cancer Cluster provides a unique opportunity to share knowledge with other professionals dedicated to developing new cancer treatments.” Meg Valnoski, President Theradex Oncology

Meg Valnoski explains how the company has been supporting the development of cancer treatments for over 30 years and experienced the advancements in cancer treatments over that time.

 “We are always working to expand our knowledge and experience in cancer drug development to support our partnerships with companies developing new therapies for cancer treatment.”

Catapult life science logo

Catapult Life Science

Catapult Life Science is a centre established to bridge the gap between the lab and the industry, providing infrastructure, equipment and expertise for product development and industrialisation in Norway. It has been formed as a result of joint efforts from a range of different players with a common goal of enabling more industrialisation of life science research in Norway, truly what the Norwegians call a dugnad.

“We see Oslo Cancer Cluster as a key partner for realising our purpose, which is to create new opportunities for product development and industrialisation in Norway.” Astrid Hilde Myrset, CEO Catapult Life Science

Myrset adds:

“Our vision is ‘Bringing science to life’, which implies enabling new ideas to a be developed in Norway for new employment in the pharma industry, new growth in the Norwegian economy, and last but not least, new products to the market, enabling a longer and healthier life for patients.”

 

This post is part of a series of articles, which will introduce the new members of our organisation every three months.

  • To find out who else is involved in Oslo Cancer Cluster, view the full list of members
  • Follow us on Facebook or subscribe to our newsletter to always stay up to date!

 

Sign up to OCC monthly newsletter!

Gunhild M. Mælandsmo, Per Morten Sandset and Cathrine M. Lofthus have joined our board.

New board members

Three new board members of Oslo Cancer Cluster: Per Morten Sandset, Gunhild M. Maelandsmo and Cathrine Lofthus

We are happy to welcome three new members to the board of Oslo Cancer Cluster. Find out what they had to say about entering their new positions.

Per Morten Sandset

Per Morten Sandset

Per Morten Sandset is a Senior Consultant in hematology at the Oslo University Hospital and a professor in thrombosis research at the University of Oslo. He has previously been head of the Department of Hematology and Deputy Director of the Medical Division at Ullevål University Hospital and Director of Research, Innovation and Education of the southeastern Norway Health Region. He is currently Vice-Rector at the University of Oslo with responsibilities for research and innovation including the life sciences activities of the university. Sandset has published more than 315 original publications and supervised 30 PhD students.

Why did you join the board of Oslo Cancer Cluster?

“There are currently strong political expectations that the many scientific achievements in the life sciences can be utilized, commercialized and eventually form the basis for new industry.”

“Oslo Cancer Cluster has matured to become a major player of the research  and innovation ecosystem within the life science area in Oslo and also on a national level. This is why being on the board is so interesting and important.”

What do you hope to achieve in your new role?

“As a OCC board member, I want to strengthen and develop the collaboration across the sectors, i.e., between the hospitals and the university – and between academia and industry. On a larger scale, it is about establishing a regional ecosystem that take achievements of the basic sciences into the development of enterprises. Oslo Cancer Cluster should maintain its role as the major player in the cancer area.”

Gunhild M. Mælandsmo

Gunhild Mari Mælandsmo

Gunhild M. Mælandsmo is the head of Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital where she also is heading the “Metastasis Biology and Experimental Therapeutics” research group. She is a Professor at Faculty of Health Sciences, University of Tromsø.

Why did you join the board of Oslo Cancer Cluster?

“I think the concept of Oslo Cancer Cluster is very interesting, fostering a close collaboration between academia, health care providers and the health industry. 

“Focusing on translational research for many years, I think I can contribute in the board with valuable experience in several parts of the value chain; from basic science, from translational aspects and from my close collaboration with clinical partners as well as administrative experience.”

What do you hope to achieve in your new role?

“I hope I can contribute with valuable knowledge – both from cancer research and from my administrative experience from Oslo University Hospital. I also hope to see more products from small Norwegian companies reaching clinical testing and expanding the biotech industry. Finally, I hope to see the Norwegian health care system more active in providing precision cancer medicine (and to utilise the advantages we have when it comes to registries etc).”

Cathrine M. Lofthus

Cathrine M. Lofthus

Cathrine M. Lofthus is the CEO at the Norwegian South East Regional Health Authority (Helse Sør-Øst RHF). She has previously held several leading positions at Aker University Hospital and at Oslo University Hospital. Lofthus is a qualified doctor from the University of Oslo, where she also completed a PhD in endocrinology. She also holds qualifications in economy, administration and leadership, and has experience from the health sector as a clinician, researcher and leader. Lofthus also holds directorships in Norsk helsenett and KLP, in addition to being a member of the board of National e-Health.

 

We also wish to extend a special thank you to our previous board members:

  • Kirsten Haugland, Head of the Research and Prevention Department at the Norwegian Cancer Society.
  • Inger Sandlie, professor at the Department of Biosciences, University of Oslo and research group leader at the Department of Immunology, Oslo University Hospital.
  • Øyvind Bruland, professor of clinical oncology at the University of Oslo and consultant oncologist at The Norwegian Radium Hospital, Oslo University Hospital.
Tor Haugen attended a work placement at Thermo Fisher Scientific, arranged by Oslo Cancer Cluster and Ullern Upper Secondary School, where he tried DNA profiling. Photo: Elisabeth Kirkeng Andersen

DNA profiling on the syllabus

Tor takes a mouthswab before in order to profile his DNA.

Students learned about a Norwegian invention behind CAR T-cell therapy and DNA profiling on their latest work placement.

This article is also available in Norwegian here.

Thermo Fisher Scientific is a global company that develops the Norwegian technology, which is based on “Ugelstad-kulene” (The Ugelstad Beads). In June 2019, Einar, Tor, Olav and Philip from Ullern Upper Secondary School completed a work placement with Thermo Fisher Scientific in Oslo. They used the beads to profile their own DNA and learned how the beads can be used to find murderers, diagnose heart attacks and save children from cancer.

“What do you plan to study when you finish upper secondary school?” Marie asks.

“The natural sciences,” Einar and Tor replies.

“The natural sciences at NTNU,” Olav says.

“First, the natural sciences and then, join the Air Force,” Philip answers.

Marie Bosnes is supervising the students who are attending the work placement and has worked more than 24 years in the Norwegian section of Thermo Fisher Scientific. She conducts research and development in the former monastery located on Montebello, next to Oslo Cancer Cluster Innovation Park and Ullern Upper Secondary School.

Today, Marie and several of her co-workers have taken time out of their busy schedules to tutor the four students from Ullern: Einar Johannes Rye, Tor Haugen, Olav Bekken and Philip Horn Børge-Ask. The students have nearly finished their second year and have so far focused their studies on mathematics, physics, chemistry and biology. But next year, they will also study programming, instead of biology.

“It is a good mix of subjects, especially programming is useful to learn. You should consider studying bioinformatics, because, in the future, it will be a very desirable qualification,” Marie says.

Marie has studied biology and her co-workers call her Reodor Felgen (a character from a famous Norwegian children’s comic book), since she loves to constantly explore research on new topics.

Treating cancer

An ullern student is looking at the dynabeads in a test tube.

Philip Horn Børge-Ask looks at the test tubes that contain the famous “Ugelstad-kulene”. Photo: Elisabeth Kirkeng Andersen

While Einar, Tor, Olav and Philip are on a work placement with Marie, four other Ullern students are on another work placement with Thermo Fisher Scientific in Lillestrøm. This is where they develop and produce Dynabeads for the global market.

“Dynabeads are also kalled ‘Ugelstad-kulene’, because they are a Norwegian invention. During the ‘1970s, one of NASA’s goals was to make perfectly round and identical, tiny, plastic microbeads in outer space. No one thought it was possible to make them on Earth. John Ugelstad, a Norwegian chemical engineer, did not accept that fact. He completed several difficult calculations, which enabled him to produce these tiny beads on Earth,” Marie explains.

Thanks to the tiny beads, Thermo Fisher Scientific has experienced huge global success. Even though there are only 200 employees situated in Norway (out of 70 000 employees globally), the research and development conducted in Norway is extremely important for the whole company.

“We are proud to announce that every year Dynabeads are used in almost 5 billion diagnostic tests in the world,” Marie says.

Thermo Fisher Scientific has developed the beads further, so they can be used in CAR T-cell therapy to treat cancer. The first approved CAR T-cell therapy in the world that treats child leukaemia was approved in Norway in December 2018. The advanced technology is based on the Norwegian invention “Ugelstad-kulene”.

  • Watch the video from the Norwegian TV channel TV2 about Emily Whitehead, the first child in the world that received this CAR T-cell therapy. She visited Thermo Fisher Scientific in Oslo in March 2019.

Catching killers

Elisabeth and Mary are supervising the students in the lab

Elisabeth Breivold and Marie Bosness from Thermo Fisher Scientific supervised the students in the lab. Photo: Elisabeth Kirkeng Andersen

“The beads are used for many different purposes and you will learn about a few of them today. Simply put, the beads are like a fishing rod. Depending on which bait you fix to it, the rod can be used in different ways,” Marie says. “Before lunch, we will use Dynabeads for DNA profiling. This technology is commonly used by police to identify suspects after a crime, just like in the TV series CSI.”

During the presentation, Marie shows the students the front page of an American newspaper with a mugshot of Gary Ridgway, an American serial killer, also known as “The Green River Killer”. Ridgway has now confessed to killing 71 women. For many years, the police hunted the murderer without any luck. Finally, new technology enabled the police to retrieve damning evidence from the tiny amounts of DNA that Ridgway had left on his victims. The DNA evidence led to a successful conviction of the killer.

“The DNA evidence was established with DNA profiling, using Thermo Fisher Scientific’s products. They did not use Dynabeads back then, but today, they would have used the beads. You will learn how to do it yourselves in the lab,” Marie says.

Learning to profile DNA

Olav takes the mouth swab

Olav performs a mouth swab on himself, the first step to retrieve the DNA. Photo: Elisabeth Kirkeng Andersen

Before the students enter the laboratory, they need to put on protective glasses, lab coats and plastic shoe covers. The students will profile their own DNA, the same way the police profile the DNA from suspects or criminals.

First, the Ullern students collect the cells with a mouth swab. Then, they add the different enzymes and chemicals that will open the cell membranes into the test tube, so that the DNA is released.

Afterwards, the Ullern students add “Ugelstad-kulene”, which bind to the DNA like magnets. Then, they retrieve their DNA from the solution.

They put the DNA in a kind of “photocopier”, in order to study it with something called “gel electrophoresis”. This is a method for analysing individual parts of DNA that make up the human genome. It shows a bar code pattern, which is completely unique for every person in the world.

Tor is using the pipette in the lab.

Tor adds new chemicals to the solution with his DNA. Photo: Elisabeth Kirkeng Andersen

“DNA is incredibly stable, which means that we can retrieve it from people and animals that died a long time ago and copy their DNA so that it can be analysed,” Marie explains.

“The most fun was to retrieve our own DNA. We tried it ourselves and it was fun to learn how to do it,” Philip says.

The Ullern students were very happy with their work placement at Thermo Fisher Scientific.

“I think the placement was educational and interesting. It was very well arranged and we got to try many different things. What surprised me the most was probably the close collaboration between scientists at Thermo Fisher Scientific – it seemed like everyone knew each other!” Philips says at the end of the day.

After the students had completed the DNA profiling, they ate lunch and then they learned more about the use of “Ugelstad-kulene” in diagnostics, and CAR T-cell therapy.

Elisabeth Breivold supervised the students while they performed the DNA profiling in the laboratory at Thermo Fisher Scientific.

Elisabeth Breivold supervised the students while they performed the DNA profiling in the laboratory at Thermo Fisher Scientific. Photo: Elisabeth Kirkeng Andersen

 

Sign up to OCC newsletter

Martin Bonde, CEO of Vaccibody, a member of Oslo Cancer Cluster, held a company presentation at the International Cancer Cluster Showcase 2019.

Dynamic networking and pitch sessions at ICCS 2019

Martin Bonde, CEO Vaccibody.

Oslo Cancer Cluster and its international partners organised the International Cancer Cluster Showcase (ICCS) on 3 June in Philadelphia, kickstarting this year’s BIO International Convention.

International Cancer Cluster Showcase 2019

The aim of this annual event is to showcase cutting edge oncology research and development activities performed in start-ups and biotechs from Oslo Cancer Cluster and its international partners from North America and Europe.

This year’s meeting offered a compact program including company presentations, engaging poster sessions and lively networking among representatives of the international oncology community.

Jutta Heix, Head of International Affairs at Oslo Cancer Cluster, and main organizer of the event:

“Building on the first meeting at the Whitehead Institute in Cambridge in 2012, ICCS was established as a successful format to expose and connect emerging oncology companies to executives of the global oncology community attending the BIO International Convention.

“Via collaboration with partners from North American and European innovation hubs, we gather a strong group of exciting new companies and attract more than 200 participants.”

Jan Alfheim, CEO of Oncoinvent, another member of Oslo Cancer Cluster also held a presentation.

Jan Alfheim, CEO of Oncoinvent, another member of Oslo Cancer Cluster also held a presentation.

Among this year’s presenters were our members OncoInvent and Vaccibody. The dynamic pitch session featured 20 companies from 9 countries advancing a variety of innovative oncology technologies and assets in preclinical and clinical development.

“ICCS was a great opportunity to present Vaccibody and our recent progress towards a relevant international audience. It triggered new contacts and stimulated good discussions following the presentation.”
Martin Bonde, CEO of Vaccibody

Commenting on the highlights, Heix said:

“The National Institutes of Health / National Cancer Institute (NCI) participated for the 2nd time. Michael Salgaller, Supervisory Specialist Technology Transfer Center presented the partnering opportunities and benefits the NCI offers to outside parties from academia and industry.

“Our sponsors Precision for Medicine, Takeda Oncology and Boehringer Ingelheim enriched the program by short presentations and active discussions during the humming poster and networking sessions.”

 

The event was sponsored by:

Boehringer Ingelheim logoDNB logoeaec logo

Precision for medicine logo Takeda logo

 

The event was organised by:

Logos of the event organisers