Dr. Richard Stratford and Trevor Clancy in OncoImmunity are happy about getting prestigious financing through EUs SME Instrument in December 2018. Photo: Oslo Cancer Cluster

Machine-learning for immunotherapy

Photo of Richard Stratford and Trevor Clancy in OncoImmunity.

A prestigious EU-grant will advance OncoImmunity’s machine-learning approach to develop personalized cancer immunotherapy.

The bioinformatics company OncoImmunity AS is empowering cancer immunotherapy with artificial intelligence. They use innovative software solutions to guide the discovery of neoantigen-based personalized immunotherapies and biomarkers. What does this really mean?

It means that the software they have developed helps to identify neoantigens, also known as immunogenic mutations, in a patient’s cancer cells. Cancer cells deceive the immune system by looking like healthy cells. But they still express cancer-specific markers, known as neoantigens. (See facts box for explanation.)

 

Enables personalized medicine

The interesting part about neoantigens, is that every patient’s tumor expresses a unique combination. This enables truly personalized medicine to be applied, if the correct neoantigens are selected from the thousands of possible candidates in the genome of a tumor. Researchers using this technology can now solve this “needle in the haystack” challenge by analyzing a tumor genome to figure out the right cocktail of neoantigens, for each individual patient, and design a specific vaccine or cell therapy uniquely designed just for them.

Such personalized immunotherapy can for instance boost the immune system’s response by making the immune system better able to recognize and target the patient’s unique cancer cells.

 

Faster bespoke treatment

OncoImmunity’s flagship software, the ImmuneProfiler™, is a unique machine learning solution that makes it easier to instantaneously see and accurately select which neoantigens will be responsive in each patient.

It thereby helps biotech companies design neoantigen-based personalized cancer vaccines and cell therapies and enables bespoke treatments to be developed faster. Additionally, the technology allows clinical researchers to select which patients will likely respond to the wide range of cancer immunotherapies currently under development in the field.

In that sense, the OncoImmunity-approach to cancer treatment is exactly in line with Oslo Cancer Cluster’s main goal: to speed up the development of new cancer treatments for the benefit of cancer patients.

 

Prestigious EU-grant

Horizon 2020’s SME Instrument is a grant that is tailored for small and medium sized enterprises (SMEs). It targets innovative businesses with international ambitions — such as OncoImmunity.

The SME Instrument has two application phases. Phase one awards the winning company 50 000 Euros based on an innovative project idea. Phase two is the actual implementation of the main project. In this phase, the applicant may receive between 1 and 2,5 million Euros.

Oncoimmunity won the phase one project last year. Then, the founders of the bioinformatics company were happy about the opportunity to refine and optimize their machine-learning framework. Their goal has always been to facilitate personalized cancer vaccine design.

 

Fantastic funding

Now, they have won a considerably larger grant of 2,2 Million Euros that they are going to use to fund a project titled Machine-learning Engine for the Design of personalized Vaccines in Cancer (MEDIVAC).

The SME Instrument grant provides OncoImmunity the opportunity to further customise their machine-learning framework, called the ImmuneProfiler™,for specific vaccine platforms, facilitating the design of safer and more efficacious personalised cancer vaccines.

— We applied for the SME instrument grant as it represents a fantastic funding vehicle for cutting edge, innovative projects with huge commercial potential. The call matched our ambition to position OncoImmunity as the leading supplier of neoantigen identification software in the personalised cancer vaccine market, says Dr. Richard Stratford, Chief Executive Officer and Co-founder of OncoImmunity.

— This opportunity will also help us establish the requisite quality assurance systems, certifications, and clinical validation with our partners, to get our software approved as a medical device in both the EU and US, says Dr. Trevor Clancy, Chief Scientific Officer and Co-founder of OncoImmunity.

 

SMEs can apply

The SME Instrument is looking for high growth- and highly innovative SMEs with global ambitions. They are developing innovative technologies that have the potential to disrupt the established value networks and existing markets.

Companies applying for the SME Instrument must meet the requirements set by the programme. Please see the SME Instrument website for more information in English or the SME Instrument webpage of Innovation Norway for more information in Norwegian.

Curious about which companies have received the SME Instrument so far? Have look at this database with an overview of all the grant receiving companies in Europe.

Want to know which Norwegian companies received grants from The European Unions research programme Horizon2020 in 2018? Read this article from Innovation Norway (in Norwegian).

Oslo Cancer Cluster  supports members via the EU Advisor Program in collaboration with Innovayt, making them aware of relevant EU- and H2020 funding opportunities and helping them to identify the right calls for their development phase and goals. Oslo Cancer Cluster also assists with partner searches using national and international networks and provides direct support during the grant writing and submission process.

 

 — We want to use Norwegian spearhead technology to combat cancer, Per Håvard Kleven said during his pitch at the DNB Nordic Healthcare Conference 12 December 2018. 

Industrial precision against cancer 

The start-up company Kongsberg Beam Technology wants to direct the precision technology from smart missiles to hit tumours in the human body. — We want to use Norwegian spearhead technology to combat cancer, Per Håvard Kleven said during his pitch at the DNB Nordic Healthcare Conference 11 December 2018. 

Kongsberg Beam Technology wants to direct the precision technology from advanced industrial control systems to hit tumors in the human body.

— We want to use Norwegian spearhead technology to combat cancer, Per Håvard Kleven said from the stage as he pitched the idea of his start-up at the DNB Nordic Healthcare Conference 2018.

He is the founder of the start-up company Kongsberg Beam Technology AS. As he wrote the patent application for the technology behind this start-up, he was far from the only one to explore this field. Nevertheless, the patent was granted earlier this year (2018). He was ahead of companies like Siemens and other giants.

— There is a lot of research going into radiation and all of it is focusing on increased precision, but no one is attacking the problem as fundamentally as we are.

 

Precision proton radiation

The method in question is proton radiation. This kind of radiation is directed towards a tumour and radiates far more precisely than x-ray radiation, the standard radiotherapy that hospitals currently use to treat cancer.

Proton radiation requires special machines. There are currently only 85 of these machines, known as proton  therapy synchrocyclotrones, in the world. Norway awaits its first proton synchrocyclotron in a couple of years. The existence of such a machine in Norway is a precondition for the business plan of Kongsberg Beam Technology.

This is one of the few proton therapy machines in use in the world today. It is the proton therapy synchrocyclotron in the Jacobson Building at the Mayo Clinic in Rochester, Minnesota, USA. Photo: Jonathunder/ Wikimedia Commons

The ambition of Kleven and his new board of directors is to let proton radiation follow the movements of the tumour, meaning the smallest movements of the patient as she breathes. This does not seem like much, but there is actually a lot of movement in for instance the lungs. And with vital organs closely linked to the lungs, such as the heart and the spine, it is extremely important to have a precise beam.

There is in deed a need for more precision in radiation therapy.

— The radiation that the hospitals use to treat cancer today is not precise. Healthy tissue is always damaged with radiation and this is a problem which we are attacking.

 

Norwegian spearhead technology

The system in question is to figure out exactly where the tumour is situated in the body, how it moves and how much radioactive energy it takes to radiate it properly.

He wants to take the principals and methods currently used in precision industries such as defence, space and oil- and gas, and apply these to radiation in cancer treatments. The aim is to obtain industrial precision to avoid damaging any healthy tissue.

 

Aims to develop a solution

The mechanical part of the system makes it possible to do online tracking of the cancer and synchronise the beam so that it always hits exactly on the cancer. This might not sound like it should be too difficult, but indeed it is.

— We cannot control a beam of particles with the agility and precision that is required today, but these functions will develop. We aim to develop them!

– In five years, when our project makes proton radiation reach its potential for industrial precision, my assumption is that proton radiation will take a much higher share of radio therapy in cancer treatment and that the number of proton centres will increase steeply.

According to Kleven, the testing will start soon, followed by prototyping and further testing and qualification. The goal is to have a working system by mid 2024. Kleven assumes that the future product can be installed as an add-on to exciting proton therapy synchrocyclotrones.

— Testing and remaining R&D will start as soon as the needed capital is in place, he said.

 

Needs more funding

The financing for the start-up so far is covered by Buskerud county, Innovation Norway, Oslofjordfondet and the Research Council of Norway. Kongsberg Beam Technology needs 93 million NOK initially, to test, develop and qualify the technology. 60 million of this sum should come from investors.

Kleven shows an estimate of a one billion NOK turn-over after a few years, in a profitable company with growth possibilities.

The new business is going to be established in Kongsberg in Norway, a town that is already well established as a hub for spin offs of the Norwegian defence industry. Kleven himself has a lifetime of experience from this sector, since he started to work in Kongsberg Weapons Factory (Kongsberg Våpenfabrikk) in 1975.

Meet Thomas Andersson, the new Senior Advisor Business Development in Oslo Cancer Cluster and Oslo Cancer Cluster Incubator. Photo: Oslo Cancer Cluster

– An idea needs to attract investors

Meet Thomas Andersson, our new Senior Advisor Business Development. How could he be of help to your startup company? 

— The most important thing I do is to get the startup companies rolling.

Thomas Andersson, the new Senior Advisor for Business Development at Oslo Cancer Cluster and Oslo Cancer Cluster Incubator, looks dead serious as he makes this statement, but immediately after he lets out a smile and elaborates:

— A company needs to be investible. An idea needs to attract investors.

A lifetime of experience
Thomas holds a Ph.D. in Physical Chemistry from Lund University in Sweden and has more than 30 years of experience from establishing, operating and funding start-ups in the life science field. He has a long background in business development in health tech startups, all the way back to the early 1980s.

— I’m that old! I went straight from my Ph.D. in biophysics into the problem-solving of business development.

In his career he has also taken on issues with patents and sales and he even bought a company that produced monoclonal antibodies with some friends and remodelled and sold it. 

— What did you learn from this journey? 

— I learned quite a lot, including the production business and the cell cultivation biotech business from the floor. I also learned how to lay out the production manufacturing facility.

See it like an investor
Thomas Andersson knows the biotech startup-scene from the investors’ point of view. He started to work at the tech transfer office of Karolinska Institutet in Sweden. It was called Karolinska Innovations back then, now it is known as KI Innovations.

— We raised a lot of money there, formed 45 companies as a group and we had a fantastic time! 

After 8 years he was recruited to Lund and worked in Lund University Bio Science and tried to vacuum clean the whole university for life science innovation.

— And we did find a lot! In the end there were about 20 investment proposals and those ended up in 9 investments, of which we turned down 5 or 6. Two of them are now at the stock market. 

In total, Thomas Andersson has been involved in starting about 20 companies, of which 5 survived and are now on the stock market.

Normally, it is said that only 1 in 30 biotech startups make it. 

 

Thomas Andersson, Senior Advisor Business Development. Photo: Oslo Cancer Cluster

Here for you
— How did you end up here at Oslo Cancer Cluster?  

— I have had my eyes on Oslo Cancer Cluster for a while. I have liked the ideas that the cluster stands for. And I wanted to do something new in the end of my career. That is why I am here as a senior advisor now. I like it here! I am working on very interesting projects and ideas.

Our new Senior Advisor Business Development is present in Oslo Cancer Cluster Incubator nearly every week although he still lives in Lund, Sweden, on a farm in the woods where he can be practical and hands-on with hardwood and fly fishing.

— My door is open to people in the cluster and incubator with projects and ideas. I have a network that can help them and I have the experience of how investors, scientists and other actors can value a company. And being a Swede in the Norwegian system; I am basically here also to encourage you to think differently.

 

Interested in more funding opportunities for your company?

Check out our Access to Capital-page. 

 

Innovasjonsrammen funds early stage cluster projects. Apply before the deadline! Image: Shutterstock.

In need of start-up funding?

Are you and your cluster company in need of early stage funding? Apply for Innovasjonsrammen by the 10th of September and compete for important start-up money.

Early financing for establishing companies is often limited, but can be absolutely crucial to get important projects off the ground. Therefore, Innovation Norway has created the special funding program Innovasjonsrammen (English: Innovation Frame) to support cluster start-ups at an early stage.

All our start-up members are invited to apply for money and note that you have the possibility to collaborate with partners outside the cluster.

NOK 10 million in funds are available for the calender year 2018. Two of our cluster members – Seald and NorGenoTech  – received funding earlier this year through the program, NOK 300 000 each.

 

For more information contact Bjørn Klem, General manager Oslo Cancer Cluster Incubator HERE.

The following criteria follow the application:

  1. The project must be a collaboration consisting of at least two companies and were one needs to be a member of the cluster.
  2. Innovation Norway offer a maximum of 50 percent funding for each project
  3. The project must comply with the guidelines set for research and development projects by the EEC regulations.
  4. The financing must have a substantial impact on the project.
  5. The project must comply with Innovation Norway’s demands for sustainability. All applicants must explain how they take care of their social responsibility through responsible business ethics, and describe possible positive environmental and social effects of the project. Read more on Innovation Norway’s guidelines here.
  6. The use of the funds must be reported by January 2020, possibly based on a milestone plan.