Agnete B. fredriksen in front of an illustration of Vaccibody's cancer vaccine technology. Image: Espen Haakstad/OCC.

Creating One Cancer Vaccine Per Patient

Oslo Cancer Cluster member Vaccibody is making headway with their cancer vaccine technology. Now they are ready with clinical trials involving 40 patients in Germany, the first patient is already enrolled.

 

Neoantigens Reveals Cancer Cells
Cancer is famous for its ability to deceive, appearing to the immune system as normal tissue while wreaking havoc on the body. But what if cancer cells could be revealed with subtle but unmistakable characteristics that revealed their true nature?

This revealing clue exists and is called neoantigens, which are mutated (or changed/altered) proteins found only in cancer cells. This is the science behind what Vaccibody and Agnete Fredriksen is currently doing, working to develop vaccines that use neoantigens to help patients’ own immune systems recognize and fight cancer tumors.

— I dare to say that this is quite unique. Each vaccine is thoroughly customized for each individual cancer patient. One vaccine per patient! What we do is conduct biopsies and blood tests to reveal each patient’s unique set of neoantigens and with our technology we have the ability to create a potent individualized vaccine in a relatively short time at reasonable cost, says Agnete B. Fredriksen, President and Chief Scientific Officer at Vaccibody.

Extra Effective With Checkpoint Inhibition
The Vaccibody researchers analyze individual tumor genomes and the patients’ immune systems to select an optimal mix of neoantigens.

— We can do that in a few days because of modern technology. Then we monitor and record the changes we think the immune system will react to and include them in the personalized vaccine. The neoantigen technology is then combined with so called checkpoint inhibitor therapy, which stops tumors from suppressing immune-system activity — to make the vaccine extra effective.

With this personalized medicine approach, each patient receives a unique DNA vaccine, in combination with standard of care checkpoint inhibitor therapy.

Vaccibody has also reached the front page of VG! Read the story here. (In Norwegian)

Clinical Trials in Germany
In the upcoming German clinical trials the vaccine will be tested on patients with locally advanced or metastatic non-small cell lung cancer, melanoma, renal, bladder or head and neck cancer.

— Our technology is very flexible and it can record a number of different changes. The vaccine is therefore applicable as a treatment for many different kinds of cancers. The ones included in the trial are chosen because they contain a high number of mutations and changes creating a good basis to create a neoantigen vaccine.

During the trial Vaccibody will check if the vaccine is safe and without side effects.

— We really think it is based on previous experience with this platform! And we will of course check if the vaccine has the expected immune response and investigate signs of clinical efficacy, says Fredriksen.

Hør forsker Hege G. Russnes og professor Anne Hansen Ree fortelle om forskningsprosjektet MetAction, som også har nådd forsiden av VG, og hvordan gentilpasset behandling gir et tilbud til pasienter som ikke har hatt det tidligere. Bilde: Oslo Cancer Cluster.

Bekjemper kreft med gentilpasset behandling

Gentilpasset behandling har siden begynnelsen av 2000-tallet blitt beskrevet som et av de nye, viktige våpnene som kan bekjempe kreft.

Hør forsker Hege G. Russnes og professor Anne Hansen Ree, her fra Cancer Crosllinks i januar i år, fortelle om deres forskningsprosjekt MetAction, og hvordan de tar i bruk gentilpasset behandling for å gi et behandlingstilbud til en pasientgruppe som har manglet det tidligere. Nå avsluttes prosjektet og du kan høre her hvorfor forskerne synes det er både feil og trist.

Forskningsprosjektet, som varte fra 2014 til 2017, ble ledet av Ree, kreftforsker og professor Gunhild Mari Mælandsmo, molekylærpatolog og lege Hege Russnes ved Oslo universitetssykehus, samt kreftkirurg og lege Kjersti Flatmark.

I forrige uke fikk de også forsiden på VG. Og det med god grunn: Ved bruk av genterapi og tverrfaglig kompetanse gir de hjelp til nye pasientergrupper og løfter norsk kompetanse innen gentilpasset behandling.

Les saken i VG her.

Young Skills at Thermo Fischer

The innovation company of the year wants to encourage young talents. 

 

Six students from Ullern Upper Secondary School spent their school day at Thermo Fisher Scientific just days after the company won the prestigious award as the innovation company of the year in Norway.

As part of the school collaboration between Ullern Upper Secondary School and Oslo Cancer Cluster, Thermo Fisher Scientific opens their labs for science students at work deployment.

 

Curious about the school collaboration? Check out our new webpage!

The Dynabeads
The students got a unique insight into how one of Norway’s largest biotechnology companies advances their products, based on the so-called Ugelstad-beads or Dynabeads, developed by Professor John Ugelstad in the late 1970s.

Today, Dynabeads are further industrialized for use in specialized diagnostic tests and cancer treatments worldwide. Annually, the beads are used in an estimated number of four billion diagnostic analyses.

Scientist Synne Larsen and three students are in the company laboratory in Lillestrøm, a ten minute train ride from the capital, where Thermo Fisher Scientific quality checks its products in Norway.

Impressed students 
– I find it incredibly useful to see how our learning at school is being used in the workplace, says student Emma E. J. Botten.

Together with two co-students she was able to see the research and production done in the company’s facilities in Lillestrøm. In parallel, three of the girls’ fellow students were in Oslo and tried out life as crime scene investigators, using Dynabeads as a tool for finding DNA, in the company’s facilities in Montebello.

– It’s impressive to see how much work lies behind their products and how dedicated those who work here are, says student Nora B. Grone.

Diverse employment strategy
The students are in their third year at Ullern Upper Secondary School, with science as their speciality. They all want a career in medicine, global health, mathematics, physics or engineering. A tour of the lab and a visit to the factory were therefore among the highlights of the day.

– It was a bit overwhelming to see Ugelstad’s equation, which is the recipe for the beads, says student Thilde E. Kjorstad.

– Yes, but keep in mind that everyone cannot be as brilliant as Ugelstad. Everybody we employ is equally important and we must have people with different backgrounds and experience, says Erlend Ragnhildstveit, Research Director of Thermo Fisher Scientific in Norway.

Useful cooperation
Thermo Fisher Scientific is a member of Oslo Cancer Cluster. Part of the staff is situated in Oslo Cancer Cluster Innovation Park, where Ullern Upper Secondary School is located as well.

– The collaboration with Ullern is useful and important to us as a company. This makes it easier to host deployments. In order to develop our business further, as well as the health industry in Norway, we need people with a science background, says Erlend Ragnhildstveit.

Immunotherapy: Finding the Right Fit

A new Norwegian research collaboration helps uncover what treatments are the right fit for American cancer patients. Who are the collaborators and what are they doing?

There’s a lot of excitement and optimism concerning immuno-oncology, where the method is to utilize a person’s own immune system to treat cancer. However, excitement aside, methods such as this are often a costly experience, in expenses as well as negative and unpredictable side-effects for the person in treatment.

Calibrated Collaboration
Company OncoImmunity is collaborating with the Norwegian Cancer Genomics Consortium (NCGC) in finding out what is causing these serious and unpredictable side-effects.

– This collaboration is an exciting opportunity for us. This is because we can demonstrate the strength of our advanced bioinformatics tools and show how they can be used to detect combinations of genetic variation in the patient, as well as neoantigens in the tumour that can further be used as biomarkers for sensitivity to this type of cancer treatment, says Dr. Richard Stratford, CEO of OncoImmunity, in a recent press release.

OncoImmunity develops proprietary machine-learning software for personalized cancer immunotherapy. The company previously won a prestigious European grant for their work.

You can read about it here!

Patients with sarcomas
The researchers in the collaboration analyse the patient’s genes in the tumour. More specifically, they are looking at American patients by using pembrolizumab, a humanized antibody that blocks cancer protection, on patients with sarcoma – cancer in various binding tissues.

Sarcomas are a rare form of cancer where treatment for such procedures have not developed as much as other cancer treatments. Patients who have sarcoma have generally a worse prognosis than other groups.

The research will be shared with the organization Sarcoma Alliance for Research through Collaboration (SARC), helping researchers within the organization to better utilize the results.

The NCGC perspective
The NCGC has, with help from the Norwegian Research Council, established a platform for advanced analysis for such cases. On top of this, they have a vast network of expertise within the area of molecular oncology.

– We find it exciting to see better treatments that can work for multiple cancers where treatment provides promising results, despite limited response, says Professor Ola Myklebost, leader for NCGC and the research project, in a recent press release.

– It is important to be able to choose the right patients for the right treatments. Not only because the treatment is high in cost, but also because of the serious and negative side-effects, he adds.