Ketil Widerberg, general manager of Oslo Cancer Cluster, gave input to the hearing on the changes to the Biotechnology Act in order to promote cancer innovation in Norway.

Research on gene-edited embryos allowed

Important cancer research into gene-edited human embryos will now be possible in Norway

Research on gene-edited human embryos will now be allowed in Norway, after a majority agreement has been reached among parties in the Norwegian Parliament. The news was given at a press conference on Thursday, when representatives from the three political parties Arbeiderpartiet, Fremskrittspartiet and Sosialistisk Venstre presented the amendments to the Biotechnology Act (“bioteknologiloven”). This is the act relating to the application of biotechnology in medicine.

The changes to the Biotechnology Act are good news for cancer patients and researchers, as they allow for research into gene-edited human embryos. This will give us important knowledge about how cancer arises and how to develop effective treatments against cancer.

Oslo Cancer Cluster gave input to these changes, during a hearing on 6 February 2020 at the Ministry for Health and Care Services. We emphasised that it is important that the regulations are in line with technological developments to promote research, so that we in the future have improved access to personalised cancer diagnostics and treatments.

“These are important changes to promote cancer innovation in Norway. It will help accelerate research into new cell therapies, which will benefit cancer patients both here in Norway and abroad,” said Ketil Widerberg, general manager of Oslo Cancer Cluster.

Gene technology is an important area in cancer research, with many recent break-through discoveries. By gene-editing human embryos, researchers can develop personalised cancer treatments and diagnostics.

Cell division in embryos and uncontrolled cell division in cancer cells is regulated by the same genes. That is why research on gene-edited human embryos will give us valuable knowledge about genetic diseases like cancer.

Gene technology can be used to create genetic changes and give us more knowledge about cell division. For example, researchers can insert genetic markers in DNA and follow the cell’s development from stem cell to cancer cell. They can also produce mutations in an embryo and study how cancer develops at an early stage.

You can read more about cancer research and gene-editing on the Cancer Research UK Science Blog.

It is important to note that the embryos used for research and gene-editing are not allowed to be implanted in a female uterus for pregnancy. This is in line with the current Swedish regulations on gene-edited human embryos.

The fact that gene-editing human embryos will be allowed in Norway means that we can attract world-class cancer clinical studies and deliver new personalised treatments to cancer patients.

The Norwegian Parliament (“Stortinget”) will officially vote on the amendments on 26 May 2020 and we will follow any further developments closely.

Sign up to our monthly newsletter

 

New member: Adjutec Pharma

Image of Oslo Cancer Cluster Innovation Park

In this article series, we will introduce the new members of our oncology cluster.

Antibiotic resistance is one of the treats for cancer patients’ survival. Meet our new member Adjutec Pharma, a company with new technology against multi-drug resistant bacteria.

Multi-drug resistant bacteria are spreading across the globe and cannot easily be treated with antibiotics. Cancer patients are an especially vulnerable group, because their immune systems may be extra susceptible to different bacteria and virus while undergoing treatment.

In Norway, new technology has been developed to combat multi-drug resistant bacteria. We asked the founder of the company Adjutec Pharma, Professor Pål Rongved, to tell us more about this new tecknologi.

Who is Adjutec Pharma and how are you involved in health and cancer?

Antibiotic resistance can render modern medicine useless, if new technology is not found. The biotech start-up AdjuTec Pharma AS was established in 2019 by the main grounder, Professor Pål Rongved, UiO, to develop their cutting edge technology (ZinChel). Their compounds have proved very effective as low-toxic adjuvants in combination with last resort antibiotics against a wide range of multidrug-resistant Gram-negative bacteria. These are increasingly spreading across the globe. These bacteria are at the top of the WHO’s list of 12 ‘priority pathogens’, representing the most dangerous bacteria in the world.

Why did Adjutec Pharma become a member of Oslo Cancer Cluster?

“About 20 % of the cancer patients are dying from infectious diseases, making the technology highly relevant for the cancer clinic. The OCC Incubator is a unique partner for networking and a number of services that aids exchange of expertise, comprises a spectrum of companies, institutions and organizations. This gives a valuable opportunity to contribute to aiding the cancer patients with their secondary infections, and further stimulates research collaborations,” said Rongved.

Sign up to our monthly newsletter

Foto: Helsenæringens Verdi 2020

Helsenæringens verdi 2020

Helsenæringens Verdi 2020

Helsenæringen er en dobbel mulighet for Norge: næringen kan løse mange av våre helse- og omsorgsutfordringer de neste tiårene og samtidig bli en av våre største næringer, med eksport til et globalt marked.

Den norske helsenæringen hadde en samlet omsetningsvekst på 4,7 prosent i 2018. Rapporten dokumenterer at denne veksten særlig var drevet av store selskaper i den norske helseindustrien. Bedriftene i alle bransjene i helsenæringen rapporterer om ytterligere vekst 2019, noe som resulterer i et vekstestimat for næringen som helhet på 6,2 prosent for 2019 – dette er høyere enn næringens gjennomsnittlige årlige vekst for de siste ti årene.

Bedriftene rapporterer samtidig om svært sterke forventninger til treårsperioden fra 2020 til 2022. Bedriftenes egne vekstprognoser for disse årene er imidlertid hentet inn før Koronakrisen utviklet seg til en global krise. Det er av den grunn svært høy usikkerhet knyttet til disse prognosene.

Koronakrisen er en «helsekrise». Dette gjør at krisen påvirker helsenæringen med en langt større variasjon mellom bransjer og segmenter enn for andre næringer. I rapporten redegjøres det både for segmenter i helsenæringen som aldri har opplevd høyere etterspørsel og aktivitet enn nå under Koronakrisen samt for bransjer og segmenter som har tilnærmet stoppet helt opp.

Den norske helsenæringen fremstår som godt forspent for videre vekst også i etterkant av Koronakrisen. Krisen har bidratt til å rette fokus på beredskap og innenlandsk produksjonskapasitet. En trend mot dette er ventet å styrke selskaper og produksjonsland som kan levere kvalitet, profesjonalitet og trygghet for leveranser, også i krisesituasjoner. Dette er en trend som bør kunne gagne Norge og norske helsebedrifter, både produsenter av legemidler eller medisinsk teknologi så vel som leverandører av helsetjenester.

Helsenæringens verdi 2020 dokumenterer at det er særlig er to ting bedriftene etterspør for å sikre videre vekst,

  • Markedstilgang – bedriftene i helsenæringen, både industri- og behandlingsbedriftene, trekker frem tilgang til offentlige anbud og konkurranse på like vilkår som den største flaksehalsen for videre vekst. Det er særlig mindre bedrifter og selskaper med inntekter fra både inn- og utland som opplever tilgangen på offentlige anbud som dårlig.
  • Skaleringskapital – det trekkes frem av et flertall av bedrifter at de savner støtteordninger som er innrettet mot skalering og internasjonalisering

Se lanseringen av Menon-rapporten

Les rapporten Helsenæringens Verdi 2020

Aktørene som står bak Menon-rapporten:

arrangørers logo

Richard Godfrey, CEO, BerGenBio - a Norwegian biotech company that has developed a cancer treatment that is now being trialled on COVID-19 patients.

Norwegian cancer drug in COVID 19-programme

Richard Godfrey, CEO BerGenBio

British health authorities are testing six medicines against the coronavirus and bemcentinib from the Norwegian biotech BerGenBio is the first treatment to be tested.

Bemcentinib is an AXL inhibitor that our member BerGenBio has developed to treat cancer, by boosting the patient’s immune system. Now, bemcentinib will be evaluated by the British government as a treatment option for COVID-19 patients.

On Tuesday, the British government launched the ACCORD programme (Accelerating COVID-19 Research & Development platform). It is an accelerated research and development programme for the treatment of COVID-19.

So far, no medicine has been found to treat COVID-19, but the work group behind ACCORD has selected six promising candidates, of which the drug bemcentinib from BerGenBio is the first to be trialled.

The study will include 120 patients, of which 60 are COVID-19 patients currently in hospital and the other 60 are a control group who receive standard treatment. The first data from the clinical testing may be available already in the next few months. If the results are positive, the clinical trial will continue to a larger second stage (phase 3).

The study is financed by the Department of Health and Social Care and UK Research and Innovation.

Bemcentinib is already in clinical trials as a cancer treatment and early testing has shown that the treatment has antiviral effects.

Richard Godfrey, Chief Executive Officer of BerGenBio, commented: “We are delighted to be part of this initiative which is a ground-breaking partnership between government, academia and industry.  We are hopeful that bemcentinib can play a significant role in the global effort to find suitable treatment options for COVID-19 patients, which has had such serious implications for so many people and thereby ease pressures on hospital intensive care units, and ultimately treat thousands of patients. We are poised to commence dosing in the coming days and will provide results as soon as is practically possible.”

Read the press release from BerGenBio

Letter from CEO Richard Godfrey on COVID-19 Clinical Trial

In the Norwegian news: