Three offices have been converted into extra laboratory space for the members of the Incubator.

The Incubator Labs are expanding

One of the tenants in the Oslo Cancer Cluster Incubator.

The laboratories at Oslo Cancer Cluster Incubator are expanding to meet increasing demand from members.

 

Oslo Cancer Cluster Incubator has recently converted three offices into new laboratories to accommodate the rising demand from their members.

From the opening in 2015, the laboratories in the Incubator have been a great success. Several of the start-ups have expanded their work force and require more offices and lab space.

The new laboratory is jointly occupied by Zelluna Immunotherapy and the Department of Cellular Therapy (Oslo University Hospital). The Institute for Energy Technology and Arctic Pharma have also expanded their laboratories with an extra room each.

The laboratories are now running at full capacity, but there is some space available in the shared labs. Some of the members of the Incubator offer their services to outside companies who are in need of getting lab work done.

“Our ambition is to grow the Incubator Labs further into the new Innovation Park next door.” Bjørn Klem, General Manager

 

Office plan of the OCC Incubator

The Incubator occupies over 550 square meters. Offices have been converted into labs to meet the growing interest from the members.

 

A unique model

The Incubator Labs follow a unique model, which offers both private laboratories and fully equipped shared laboratories. The private laboratories are leased with furniture, water supply, electricity and ventilation. The companies bring their own equipment depending on their needs.

Shared laboratories, including a bacteria lab, a cell lab and wet lab, are leased including basic equipment with the opportunity for companies to bring their own if shared by all tenants. All laboratories share the common support facilities including a cold room for storage, a laundry room, and storage room including cell tanks and nitrogen gas.

“This model of a shared laboratory is very unusual,” said Janne Nestvold, Laboratory Manager at the Oslo Cancer Cluster Incubator.

The advantage of working in a shared lab is that companies can avoid the costs and limitations associated with setting up and managing a laboratory. A broad range of general equipment, including more advanced, analytical instruments, are provided by the Incubator.

”It would be too expensive for a small company to buy all this equipment themselves.” Janne Nestvold, Laboratory Manager

 

The Department of Cellular Therapy (Oslo University Hospital) are one of the members using the shared lab. Photograph by Christopher Olssøn

The Department of Cellular Therapy (Oslo University Hospital) are one of the members using the shared lab. Photograph by Christopher Olssøn

 

 

Open atmosphere

The laboratories have an open and light atmosphere. Large windows provide ample lighting and all spaces are kept clean and tidy. The halls are neatly lined with closets and plastic containers for extra storage.

The general mood is calm and friendly. Nestvold communicates daily with the users about changes, updates and improvements, which sets an informal tone. Thanks to monthly lab meetings, the users are also involved in the decision-making process. The companies often work side-by-side or in teams, fostering collaboration rather than competition. There is therefore a strong workplace culture based upon flexibility and mutual respect.

The companies often work side-by-side or in teams, fostering collaboration rather than competition.

Nestvold also ensures that the high demands on the infrastructure of the laboratory are met. She has put agreements in place to facilitate the members’ needs, such as the washing of lab coats, pipette service and shipping packages on dry ice. With all these services included, the Incubator Labs are attractive for researchers and companies to carry out their cancer research.

 

Over the years, Nordic Nanovector, OncoInvent, Targovax, Intersint, OncoImmunity have conducted research in the laboratories. Now, Arctic Pharma, the Department of Cellular Therapy (Oslo University Hospital), GE Healthcare, the Institute for Energy Technology, Lytix BioPharma, NorGenotech, Ultimovacs and Zelluna Immunotherapy are using the Incubator Labs to develop their cancer treatments.

 

  • For more information about the Incubator Lab, get in touch with Janne Nestvold.

 

Sign up to OCC newsletter

The pupils Kalina Topalova Casadiego, Ida Hustad Andresen,Andreas Bernhus and Dina Düring had the opportunity to experiment with fruit flies at the Institute for Cancer Research in Oslo.

Operation fruit flies

Three students experimenting with fruit flies in a lab.

Fruit flies are not only annoying little insects that appear when bananas are overripe. They are also popular research tools for cancer researchers.

The four pupils Kalina Topalova Casadiego, Ida Hustad Andresen, Andreas Bernhus and Dina Düring got to experience how cancer researchers look at fruit flies during their work placement in January.

“Let’s turn on the gas, and then I’ll put some fruit flies on the pad under your microscope.” Speaking is cancer researcher Lene Malrød who, together with her colleague Nina Marie Pedersen, is responsible for four pupils from Ullern Secondary School on work placements.

“Gosh! They’re moving,” proclaims one of the pupils.

But not for long. Soon, all the fruit flies are anaesthetised and, eventually, dead; then the pupils are tasked with surgically removing the ovaries of the female flies. It is easier said than done, even with the help of microscopes to enhance the tiny flies. Especially when the operating tools are two tweezers.

Fruit flies are kept in two test tubes

The fruit flies are kept in test tubes.

 

An exciting placement

It is the third day of the pupils’ work placement at the Institute for Cancer Research, located next to the school. For four days at the end of January, they have learnt about cancer research and which methods researchers use in their daily work.

“The work placement is not like we imagined,” says Kalina and Ida.

“There’s a lot more manual work than I would have thought, and then you realise how important research is through what we do,” says Ida.

She is the only one who is specialising in biology in combination with with other science subjects, and she finds this very useful when working in the lab together with researchers. The other three have had to catch up on the reading, but they all agree that it is very exciting.

“Yesterday, we learnt a lot about CRISPR, which is a new method for cutting and splicing genes. Media gives you the impression that this is a highly precise tool, but the researchers here say that a lot can go wrong, and that it’s not at all as precise as you might think,” says Ida.

A student looks at fruit flies under a microscope

The students look at the fruit flies under a microscope.

 

From Western Blot to flies

A total of twelve pupils were picked out for this work placement. They have been chosen based on motivation and grades, and they all have a wish to study something related to medicine or science after they finish upper secondary school.

The twelve students are divided into three groups with completely different activities and get to learn a number of different research methods. The group consisting of Ida, Kalina, Andreas, and Dina, for instance, is the only group which will have a go in the fly lab.

“Am I really supposed to remove the ovaries? I don’t see how,” one of the pupils say, equally discouraged and excited.

Andreas, on the other hand, is in complete control. First, he has separated the males and the females with a paint brush. He has then used the tweezers to remove the heads from the females, punctured the bottom to remove the intestines, and finally found the ovaries in the abdomen.

Lene gathers all the different body parts for the pupils to look at through a different microscope. These fruit flies are in fact genetically manipulated to glow in the dark – they are fluorescent.

If you are wondering why researchers use fruit flies as part of their research, you can read more about it in this article from Forskning.no (the article is written in Norwegian).

“It is so much fun to be here, and we are really lucky to get this opportunity,” says Dina on her way from the fly lab to another lab to carry out another experiment.

 

The pupils on the work placement have uploaded many nice photos and videos on Ullern Secondary School’s Instagram account – visit their account to see more from the placement.

New research from the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital is now available in a video and an article in the the Journal of Visualized Experiments, Jove. Photo: Christopher Olssøn.

New research: 3D structure tumors in immunotherapy

Researcher testing lab sample.

New work from cancer researchers at the Department of Cellular Therapy could help to streamline the development of exciting new immunotherapy approaches for treating cancer.

Cancer treatments that aim to switch on a patient’s immune system to kill tumor cells – so-called immunotherapy approaches – have received much attention and encouraging results in recent years. Now, the immunomonitoring unit of the Department of Cellular Therapy at Oslo University Hospital has devised a new experimental approach that could improve early stages of the immunotherapy development pipeline.

The unit is present in Oslo Cancer Cluster Incubator with a translational research lab, led by Drs. Else Marit Inderberg and Sébastien Wälchli.

 

Researchers in laboratory.

Dr. Sébastien Wälchli and colleagues in the translational research lab in Oslo Cancer Cluster Incubator. Photo: Christopher Olssøn

 

CAR T cells drive new successes

Our immune systems are generally very good at recognizing foreign infectious agents and disposing of them appropriately. However, although our immune systems are capable of recognizing tumors as a threat, cancer cells have adapted mechanisms that enable them to evade the immune response. Immunotherapy is the name given to a range of different approaches that aim to overcome this problem by improving the immune system’s ability to target cancer cells.

One relatively new example of an immunotherapy approach comes from CAR T cells. These are produced by isolating specific cells of the immune system (T cells) from a cancer patient and modifying them so that they become more effective at recognizing and killing cancer cells. The modified T cells are then placed back into the patient so that they can ‘home in’ on the tumor and kill the cancer cells.

Read about related research: T-cells and the Nobel Price

 

Difficult for solid cancers

Current models for testing new CAR T cells aren’t always optimal. Although CAR T cells have shown encouraging results in treating some cancers, particularly the blood cancers leukemia and lymphoma, the development of CAR T cells for non-blood, or ‘solid’, cancers has been more difficult.

In part, this is due to the fact that tumor models currently used in early stages of testing involve two-dimensional monolayers of cancer cells, which do not reflect the complex three-dimensional structure and organization of solid tumors found in patients.

Consequently, CAR T cells that show encouraging results using these two-dimensional models often produce less effective results at later stages of the development pipeline, meaning time, effort and resources are wasted.

 

3D tumor spheroids

To improve the early stages of testing new CAR T cells, Dr. Wälchli’s group has developed a new approach that enables researchers to grow three-dimensional cancer cell structures, or ‘spheroids’, in the lab, and to test the effect that CAR T cells have on killing off these spheroids.

Compared to current two-dimensional methods, the spheroids are more similar in complexity and structure to tumors found in patients.

In a recent publication in the Journal of Visualized Experiments, this group demonstrated for the first time that their spheroid approach has the potential to provide a useful new tool for developing CAR T cells.

They generated spheroids using colorectal cancer cells – a type of cancer for which there is currently no effective CAR T cell therapy available. These cancer cells were modified so that they possessed a molecule on their cell surface called CD19, which is known to be recognized by certain CAR T cells. The researchers then incubated these spheroids with CD19-targeting CAR T cells and used advanced live imaging techniques to track the effect on cancer spheroids.

To help other research groups who would like to start using the spheroid technique, Dr. Wälchli’s publication is accompanied by this video which introduces the approach and provides a basic overview of how it works. The Journal of Visualized Experiments requires a subscription to see the entire video. You can also read a PDF of the article “A Spheroid Killing Assay by CAR T Cells” without a subscription.

 

Successful approach

As expected, shortly after adding CAR T cells, the researchers could detect that spheroids were shrinking due to cancer cell death, proving that their approach successfully measures CAR T cell-induced tumor clearance in a quantitative manner.

Discussing the work, Dr. Wälchli says, “We believe this method can help to answer key questions about using 3D structure tumors as a suitable alternative for testing new immunotherapy approaches.”

The approach now opens the door for testing a range of different target molecules in combination with new CAR T cells targeting those molecules.

 

Fast, affordable and straightforward

Dr. Wälchli believes many researchers could benefit from the spheroid technique. He continues,

“A major advantage to our approach is that it is fast, affordable and straightforward, meaning any research group with the right equipment can test the effect of their immunotherapy on 3D tumors before moving to animal models”.